Improving biogas quality and methane yield via co-digestion of agricultural and urban biomass wastes.

Waste Manag

Physics and Mathematics Engineering for Energy and Environment Laboratory, Reunion Island University, 117, Avenue du General Ailleret, 97430 Le Tampon, La Réunion, France.

Published: August 2016

AI Article Synopsis

  • The study examined the effects of co-digestion (mixing multiple biomass types) versus mono-digestion (using individual biomass types) on biogas and methane (CH4) yields using five types of biomass, including vegetable waste and animal manures, over 65 days under high temperatures.
  • Results showed that co-digestion significantly enhanced both biogas and CH4 yields, especially when three different biomass types were combined, regardless of the specific materials used.
  • Early in the digestion process, co-digestion led to a greater increase in CH4 production compared to mono-digestion, and while it slightly improved the ratio of CH4 to CO2 in the gas produced, this change was not statistically significant.

Article Abstract

Impact of co-digestion versus mono-digestion on biogas and CH4 yield for a set of five biomass materials (vegetable food waste, cow dung, pig manure, grass clippings, and chicken manure) was investigated considering 95 different biomass mixes of the five materials under thermophilic conditions in bench-scale batch experiments over a period of 65days. Average biogas and CH4 yields were significantly higher during co-digestion than during mono-digestion of the same materials. This improvement was most significant for co-digestion experiments involving three biomass types, although it was independent of the specific biomasses being co-digested. Improvement in CH4 production was further more prominent early in the digestion process during co-digestion compared to mono-digestion. Co-digestion also appeared to increase the ultimate CH4/CO2 ratio of the gas produced compared to mono-digestion although this tendency was relatively weak and not statistically significant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2016.05.020DOI Listing

Publication Analysis

Top Keywords

biogas ch4
8
compared mono-digestion
8
co-digestion
6
improving biogas
4
biogas quality
4
quality methane
4
methane yield
4
yield co-digestion
4
co-digestion agricultural
4
agricultural urban
4

Similar Publications

A review of biogas upgrading technologies: key emphasis on electrochemical systems.

Water Sci Technol

January 2025

Engineering & Energy, College of Science Health Engineering and Education, Murdoch University, 6150 Perth, Australia E-mail:

Biogas, consisting mainly of CO and CH, offers a sustainable source of energy. However, this gaseous stream has been undervalued in wastewater treatment plants owing to its high CO content. Biogas upgrading by capturing CO broadens its utilisation as a substitute for natural gas.

View Article and Find Full Text PDF

To address the limitations of polymeric membranes, mixed matrix membranes for CO separation from biogas mixtures (CO and CH) have been investigated utilizing various fillers. In this study, we investigated novel MMMs using 3D and 2D indium-based MOFs, MIL-68(In)-NH and In(aip), in a polysulfone polymer matrix. To confirm synthesis, both fillers were subjected to XRD and FTIR analysis, as well as FESEM characterization to assess their 2D and 3D structures.

View Article and Find Full Text PDF

Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: A review.

Environ Res

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery Between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia.

Managing wastewater and using renewable energy sources are challenges in achieving sustainable development goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas production. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, respectively, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.

View Article and Find Full Text PDF

Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH) production. After adding BM at 250 mg/g WAS VS, the accumulative CH production and maximum CH yield increased by 1.

View Article and Find Full Text PDF

Biogas, primarily composed of methane (CH) and carbon dioxide (CO), is considered an alternative renewable energy resource. Efficient CO/CH separation is essential for biogas upgrading to increase energy density, and in this context, metal-organic frameworks (MOFs) have demonstrated significant potential. Here, we integrate multiscale modeling with cross-diversity machine learning (ML) to unveil MOFs with open copper sites (OCS-MOFs) that exhibit exceptional CO/CH separation performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!