With the increasing prevalence of fungal infections coupled with emerging drug resistance, there is an urgent need for new and effective antifungal agents. Here we report the antifungal activities of 19 diverse halogenated quinoline (HQ) small molecules against Candida albicans and Cryptococcus neoformans. Four HQ analogues inhibited C. albicans growth with a minimum inhibitory concentration (MIC) of 100 nM, whilst 16 analogues effectively inhibited C. neoformans at MICs of 50-780 nM. Remarkably, two HQ analogues eradicated mature C. albicans and C. neoformans biofilms [minimum biofilm eradication concentration (MBEC) = 6.25-62.5 µM]. Several active HQs were found to penetrate into fungal cells, whilst one inactive analogue was unable to, suggesting that HQs elicit their antifungal activities through an intracellular mode of action. HQs are a promising class of small molecules that may be useful in future antifungal treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2016.04.019 | DOI Listing |
J Org Chem
January 2025
Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
In this study, we developed palladium-catalyzed dehydrogenative cyclization to transform 1-(2-aminoaryl)-3-arylpropan-1-ones into 2-arylquinolin-4(1)-ones, also known as aza-flavones which are the bioisosteres of flavones, in an atom-economic manner. This method exhibited excellent chemical compatibility with a broad substrate scope, accommodating up to 25 derivatives. Additionally, kinetic studies were performed to elucidate the reaction mechanism.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria.
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated.
View Article and Find Full Text PDFEur J Med Chem
February 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.
View Article and Find Full Text PDFBiol Pharm Bull
December 2024
Department of Radiation Biosciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science.
Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China. Electronic address:
In this study, a novel process of dielectric barrier discharge (DBD)/chlorine for levofloxacin (LEV) degradation was investigated. The combined system boosted the degradation efficiency of LEV from 77.8% to 97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!