The natural neurosteroid allopregnanolone exerts beneficial effects in animal models of neurodegenerative diseases, nervous system injury and peripheral neuropathies. It not only has anti-apoptotic activity, but also promotes proliferation of progenitor cells. With respect to using it as a therapeutic tool, such pleiotropic actions might create unwanted side effects. Therefore, we have synthesized allopregnanolone analogs and analyzed their neuroprotective and proliferative effects to identify compounds with higher efficiency and less ambiguous biological actions. Proliferation-promoting effects of 3α and 3β isomers of 3-O-allyl-allopregnanolone and 12 oxo-allopregnanolone were studied in adult subventricular zone stem cell cultures and in primary hippocampal cultures by measuring 5-ethynyl-2'-deoxyuridine incorporation. Neuroprotective activity against amyloid beta 42-induced cell death was determined by quantifying caspase 3/7 activity. The 3α isomers significantly stimulated proliferation in all culture systems, whereas the 3β isomers were ineffective. The stimulatory effect of 3α-O-allyl-allopregnanolone was significantly higher than that of allopregnanolone. In neural stem cell cultures, 3α-O-allyl-allopregnanolone specifically enhanced proliferation of Nestin-positive progenitors. In addition, it promoted the differentiation of doublecortin-positive neurons. In neural stem cell cultures treated with amyloid beta 42, both the α and β isomers of O-allyl- allopregnanolone showed increased neuroprotective activity as compared to allopregnanolone, completely preventing amyloid-induced caspase 3/7 activation. The 12 oxo-allopregnanolone analogs were ineffective. These results identify structural allopregnanolone analogs with higher anti-apoptotic and proliferation-promoting activity than the natural neurosteroid. Interestingly, stereoisomers of the analogs were found to have distinct profiles of activity raising the possibility of exploiting the neuroprotective properties of neurosteroids with or without simultaneously stimulating neurogenesis. Cover Image for this issue: doi: 10.1111/jnc.13344.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.13693 | DOI Listing |
Apolipoprotein E (APOE) has multiple functions in metabolism and immunoregulation. Its common germline variants APOE2, APOE3 and APOE4 give rise to three functionally distinct gene products. Previous studies reported yin-yang roles of APOE2 and APOE4 in immunological processes, but their effects in hematopoietic stem cell transplantation (HSCT) have never been studied.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFLeuk Lymphoma
January 2025
Stem Cell Transplantation and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy.
Sci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!