Effect of subthreshold slope on the sensitivity of nanoribbon sensors.

Nanotechnology

Zepler Institute, Electronics & Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.

Published: July 2016

In this work, we investigate how the sensitivity of a nanowire or nanoribbon sensor is influenced by the subthreshold slope of the sensing transistor. Polysilicon nanoribbon sensors are fabricated with a wide range of subthreshold slopes and the sensitivity is characterized using pH measurements. It is shown that there is a strong relationship between the sensitivity and the device subthreshold slope. The sensitivity is characterized using the current sensitivity per pH, which is shown to increase from 1.2% ph(-1) to 33.6% ph(-1) as the subthreshold slope improves from 6.2 V dec(-1) to 0.23 V dec(-1) respectively. We propose a model that relates current sensitivity per pH to the subthreshold slope of the sensing transistor. The model shows that sensitivity is determined only on the subthreshold slope of the sensing transistor and the choice of gate insulator. The model fully explains the values of current sensitivity per pH for the broad range of subthreshold slopes obtained in our fabricated nanoribbon devices. It is also able to explain values of sensitivity reported in the literature, which range from 2.5% pH(-1) to 650% pH(-1) for a variety of nanoribbon and nanowire sensors. Furthermore, it shows that aggressive device scaling is not the key to high sensitivity. For the first time, a figure-of-merit is proposed to compare the performance of nanoscale field effect transistor sensors fabricated using different materials and technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/28/285501DOI Listing

Publication Analysis

Top Keywords

subthreshold slope
24
slope sensing
12
sensing transistor
12
current sensitivity
12
sensitivity
11
subthreshold
8
slope sensitivity
8
nanoribbon sensors
8
sensors fabricated
8
range subthreshold
8

Similar Publications

The continuous scaling down of MOSFETs is one of the present trends in semiconductor devices to increase device performance. Nevertheless, with scaling down beyond 22 nm technology, the performance of even the newer nanodevices with multi-gate architecture declines with an increase in short channel effects (SCEs). Consequently, to facilitate further increases in the drain current, the use of strained silicon technology provides a better solution.

View Article and Find Full Text PDF

The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit, and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe van der Waals (vdW) heterostructure.

View Article and Find Full Text PDF

A solution-gated indium-tin-oxide (ITO)-based field effect transistor (FET) without interfaces among the source, channel, and drain electrodes, which is called the one-piece ITO-FET, can be simply fabricated from a single sheet of ITO by etching the channel region. The direct contact of the ITO channel surface with a sample solution contributes to a steep subthreshold slope and a high on/off ratio. In this study, we have examined the effects of oxygen vacancies and hydroxy groups at the ITO channel surface on the electrical characteristics of the one-piece ITO-FET.

View Article and Find Full Text PDF
Article Synopsis
  • Resistive switching elements are revolutionizing computing by offering efficient logic operations, allowing a single switch to replace multiple CMOS transistors.
  • Using a microwave-assisted solvothermal process, nickel ferrite films are integrated for low-energy electrochemical metallization, achieving strikingly low voltage thresholds and electric fields.
  • The development of these films into a steep switching phase FET demonstrates potential advancements in low-power electronics, paving the way for sustainable and cost-effective solutions in CMOS logic applications.
View Article and Find Full Text PDF

Background: Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) protocols targeting primary motor cortex (M1) are used in rehabilitation of neurological diseases for their therapeutic potential, safety, and tolerability. Although lower intensity LF-rTMS can modulate M1 neurophysiology, results are variable, and a systematic assessment of its dose effect is lacking.

Objectives: To determine the dose-response of LF-rTMS on stimulated and non-stimulated M1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!