A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. | LitMetric

L-Phenylalanine ammonia-lyase (PAL) is the first enzyme in the biosynthesis of phenylpropanoid-derived plant compounds such as flavonoids, coumarins and the cell wall polymer lignin. The cell walls of grasses possess higher proportions of syringyl (S)-rich lignins and high levels of esterified coumaric acid compared with those of dicotyledonous plants, and PAL from grasses can also possess tyrosine ammonia-lyase (TAL) activity, the reason for which has remained unclear. Using phylogenetic, transcriptomic and in vitro biochemical analyses, we identified a single homotetrameric bifunctional ammonia-lyase (PTAL) among eight BdPAL enzymes in the model grass species Brachypodium distachyon. (13)C isotope labelling experiments along with BdPTAL1-downregulation in transgenic plants showed that the TAL activity of BdPTAL1 can provide nearly half of the total lignin deposited in Brachypodium, with a preference for S-lignin and wall-bound coumarate biosynthesis, indicating that PTAL function is linked to the characteristic features of grass cell walls. Furthermore, isotope dilution experiments suggest that the pathways to lignin from L-phenylalanine and L-tyrosine are distinct beyond the formation of 4-coumarate, supporting the organization of lignin synthesis enzymes in one or more metabolons.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nplants.2016.50DOI Listing

Publication Analysis

Top Keywords

bifunctional ammonia-lyase
8
grass cell
8
cell wall
8
cell walls
8
grasses possess
8
tal activity
8
role bifunctional
4
ammonia-lyase
4
ammonia-lyase grass
4
cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!