In this paper, we use the neural property known as intrinsic plasticity to develop neural network models that resemble the koniocortex, the fourth layer of sensory cortices. These models evolved from a very basic two-layered neural network to a complex associative koniocortex network. In the initial network, intrinsic and synaptic plasticity govern the shifting of the activation function, and the modification of synaptic weights, respectively. In this first version, competition is forced, so that the most activated neuron is arbitrarily set to one and the others to zero, while in the second, competition occurs naturally due to inhibition between second layer neurons. In the third version of the network, whose architecture is similar to the koniocortex, competition also occurs naturally owing to the interplay between inhibitory interneurons and synaptic and intrinsic plasticity. A more complex associative neural network was developed based on this basic koniocortex-like neural network, capable of dealing with incomplete patterns and ideally suited to operating similarly to a learning vector quantization network. We also discuss the biological plausibility of the networks and their role in a more complex thalamocortical model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065716500404 | DOI Listing |
Clin Oral Implants Res
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran.
Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.
Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.
J Oral Microbiol
January 2025
Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
Background: This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.
Methods: Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis.
Nanophotonics
January 2025
Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Smart farming is a hot research area for experts globally to fulfill the soaring demand for food. Automated approaches, based on convolutional neural networks (CNN), for crop disease identification, weed classification, and monitoring have substantially helped increase crop yields. Plant diseases and pests are posing a significant danger to the health of plants, thus causing a reduction in crop production.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Belgaum Institute of Medical Science, Belgaum, IND.
Several studies explored the application of artificial intelligence (AI) in magnetic resonance imaging (MRI)-based rectal cancer (RC) staging, but a comprehensive evaluation remains lacking. This systematic review aims to review the performance of AI models in MRI-based RC staging. PubMed and Embase were searched from the inception of the database till October 2024 without any language and year restrictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!