Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid-July to mid-September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO -N, NH -N, and K; and saprotrophic fungi to NO -N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results suggest that some fungal species are favored, while others are disfavored resulting in their local extinction due to long-term changes in snow amount. Shifts in species composition of fungal functional groups are likely to affect nutrient cycling, ecosystem respiration, and stored permafrost carbon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061721PMC
http://dx.doi.org/10.1002/mbo3.375DOI Listing

Publication Analysis

Top Keywords

saprotrophic fungi
24
increased snow
12
snow depth
12
fungi
8
community structure
8
ecm saprotrophic
8
richness ecm
8
ecm fungi
8
snow
7
ecm
5

Similar Publications

Diversity and Distribution of Fungi in the Marine Sediments of Zhanjiang Bay, China.

J Fungi (Basel)

December 2024

Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.

Fungi are one of the major components of the eukaryotic microbial community in marine ecosystems, playing a significant role in organic matter cycling and food web dynamics. However, the diversity and roles of fungi in marine sediments remain poorly documented. To elucidate the diversity and spatial distribution of fungal communities in the marine sediments of an estuary-coast continuum across three distinct salinity regions in Zhanjiang Bay, China, the variations in fungal diversity, abundance, community structure, and distribution in the sediments were investigated through the application of high-throughput amplicon sequencing using the internal transcribed spacer (ITS) primers.

View Article and Find Full Text PDF

Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, , in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from in soil with low (5 mg kg) or high (10 mg kg) concentrations of Cd.

View Article and Find Full Text PDF

Reusing treated wastewater (TWW) for crop irrigation has shown to provide environmental and economic benefits as well as drawbacks. This study was conducted using soils collected from a wastewater reuse facility in Tallahassee, FL, mainly to elucidate the long-term impact(s) of TWW irrigation on soil microbiome and nutrient status. Approximately 890 ha of land have been spray-irrigated with TWW since the 1980's to grow fodder crops.

View Article and Find Full Text PDF

Alfalfa ( L.) establishment is an effective strategy for grassland reconstruction in degraded ecosystems. However, the mechanisms underlying vegetation succession in reconstructed grasslands following alfalfa establishment remain elusive.

View Article and Find Full Text PDF

A bacterial (16S rRNA) and fungal (ITS rRNA) taxonomic characterization was carried out using metabarcoding along an altitudinal gradient in the western range of the Valle del Cauca, Colombia. This study encompassed Tropical Dry Forests, Andean, and Páramo ecosystems in Laguna de Sonso (900 m.a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!