Fetal alcohol exposure may impair growth, development, and function of multiple organ systems and is encompassed by the term fetal alcohol spectrum disorders (FASD). Research has so far focused on the mechanisms, prevention, and diagnosis of FASD, while the risk for adult-onset chronic diseases in individuals exposed to alcohol in utero is not well explored. David Barker's hypothesis on Developmental Origins of Health and Disease (DOHaD) suggests that insults to the milieu of the developing fetus program it for adult development of chronic diseases. In the 25 years since the introduction of this hypothesis, epidemiological and animal model studies have made significant advancements in identifying in utero developmental origins of chronic adult-onset diseases affecting cardiovascular, endocrine, musculoskeletal, and psychobehavioral systems. Teratogen exposure is an established programming agent for adult diseases, and recent studies suggest that prenatal alcohol exposure correlates with adult onset of neurobehavioral deficits, cardiovascular disease, endocrine dysfunction, and nutrient homeostasis instability, warranting additional investigation of alcohol-induced DOHaD, as well as patient follow-up well into adulthood for affected individuals. In utero epigenetic alterations during critical periods of methylation are a key potential mechanism for programming and susceptibility of adult-onset chronic diseases, with imprinted genes affecting metabolism being critical targets. Additional studies in epidemiology, phenotypic characterization in response to timing, dose, and duration of exposure, as well as elucidation of mechanisms underlying FASD-DOHaD inter relation, are thus needed to clinically define chronic disease associated with prenatal alcohol exposure. These studies are critical to establish interventional strategies that decrease incidence of these adult-onset diseases and promote healthier aging among individuals affected with FASD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067080 | PMC |
http://dx.doi.org/10.1111/acer.13114 | DOI Listing |
Sci Adv
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Neurohabilitation, Oslo University Hospital, 0424 Oslo, Norway.
Background/objectives: Prosopagnosia is the inability to recognize people by their faces. Developmental prosopagnosia is the hereditary or congenital variant of the condition. The aim of this study was to demonstrate the assessment of developmental prosopagnosia in a clinical context, using a combination of commercially available clinical assessment tools and experimental tools described in the research literature.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address:
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs.
View Article and Find Full Text PDFProtist
January 2025
School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom. Electronic address:
Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids.
View Article and Find Full Text PDFMusculoskelet Surg
January 2025
Bone and Joint Health, Blizard Institute, Queen Mary University London, 4 Newark Street, London, E1 2AT, UK.
Post-surgical rehabilitation advice after ankle fracture surgery, particularly regarding weight-bearing, varies significantly, leading to patient frustration and inconsistent recovery outcomes. This study aimed to establish a consensus for ankle fracture rehabilitation advice and identify content and implementation options for future interventions through consultation with healthcare professionals (HCPs). This study was part of the weight-bearing in ankle fractures (WAX) trial, a multicentre, randomised controlled trial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!