The control of microbial infections is critical for the preparation of biological media including water to prevent lethal septic shock. Sepsis is one of the leading causes of death in the United States. More than half a million patients suffer from sepsis every year. Both gram-positive and gram-negative bacteria are responsible for septic infection by the most common organisms i.e., Escherichia coli and Pseuodomonas aeruginosa. The bacterial cell membrane releases negatively charged endotoxins upon death and enzymatic destruction, which stimulate antigenic response in humans to gram-negative infections. Several methods including distillation, ethylene oxide treatment, filtration and irradiation have been employed to remove endotoxins from contaminated samples, however, the reduction efficiency remains low, and presents a challenge. Polymer nanoparticles can be used to overcome the current inability to effectively sequester endotoxins from water. This process is termed endotoxin hitchhiking. The binding of endotoxin on polymer nanoparticles via electrostatic and hydrophobic interactions offers efficient removal from water. However, the effect of polymer nanoparticles and its surface areas has not been investigated for removal of endotoxins. Poly(ε-caprolactone) (PCL) polymer was tested for its ability to effectively bind and remove endotoxins from water. By employing a simple one-step phase separation technique, we were able to synthesize PCL nanoparticles of 398.3 ± 95.13 nm size and a polydispersity index of 0.2. PCL nanoparticles showed ∼78.8% endotoxin removal efficiency, the equivalent of 3.9 × 10(5) endotoxin units (EU) per ml. This is 8.34-fold more effective than that reported for commercially available membranes. Transmission electron microscopic images confirmed binding of multiple endotoxins to the nanoparticle surface. The concept of using nanoparticles may be applicable not only to eliminate gram-negative bacteria, but also for any gram-positive bacteria, fungi and parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/28/285601DOI Listing

Publication Analysis

Top Keywords

polymer nanoparticles
16
endotoxin hitchhiking
8
gram-negative bacteria
8
remove endotoxins
8
endotoxins water
8
pcl nanoparticles
8
nanoparticles
7
endotoxins
6
endotoxin
5
polymer
5

Similar Publications

Solvent Effect on Antimicrobial Hydrophilic Xerogel Coating of Medicinal Leathers in Simulated Industrial Finishing Process.

Chempluschem

January 2025

NCSR Demokritos: Ethniko Kentro Ereunas Physikon Epistemon Demokritos, Institute of Physical Chemistry, Patriarchou Gregoriou and Neapoleos, Aghia Paraskevi, Attiki, 15310, Athens, GREECE.

The hydrophilic character and the protection against pathogen proliferation are the most pivotal characteristics of leathers intended for medical purposes.  To achieve these goals, dispersions of TiO2 particles incorporating three different formulations of biomimetically synthesized silica xerogels were tested. Emphasis has been given to the role of single and dual solvents employed.

View Article and Find Full Text PDF

Novel amphiphilic π-conjugated polymer nanoparticles tailored to efficiently absorb in the near-infrared II (NIR-II) region of the electromagnetic spectrum (>1000 nm) are presented. To achieve this, it is statistically introduced triethylene glycol substituted bithiophene moieties in various contents into a polymer backbone consisting of alternating thiophene and [1,2,5]thiadiazolo[3,4-g]quinoxaline. Through systematic modifications of monomer ratios, four amphiphilic conjugated polymers are produced.

View Article and Find Full Text PDF

Copper ions (Cu) play a crucial role in biological processes; however, excessive intake can result in severe health problems. Current methods for detecting copper ions are both expensive and complex. Therefore, there is a need for efficient and straightforward visual detection methods.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have emerged as potential energy-harvesting modules for miniaturized devices. TENG modules are derived often from components having low sustainability whereas the current environmental and economic circumstances demand a focus on sustainable, ecologically friendly approaches for the development of advanced hybrid materials. Herein, recycled polyethylene terephthalate (PET) along with commercially available nylon are electrospun into nanofibers for TENG devices.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for ischemic stroke. However, the survival of transplanted MSCs is often compromised by the excessive levels of reactive oxygen species (ROS) and calcium ions (Ca) in the ischemic microenvironment following blood flow occlusion. In this study, a protective strategy is developed using functional nanomaterials to escort and shield MSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!