Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2314 | DOI Listing |
J Environ Manage
January 2025
Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:
The addition of exogenous quorum sensing signaling molecules to the activated sludge system enables rapid sludge granulation. However, signaling molecules exposed to the environment are easily degraded, and their quorum sensing effects cannot be maintained in the long term. Therefore, they must be frequently added, which leads to an increase in operational costs.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
Bioresour Technol
January 2025
School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
In aerobic granular sludge (AGS) system, N-acyl homoserine lactones (AHLs) can effectively regulate the community structure and control filamentous bulking. It would be economically feasible to make mature granules into AHLs-rich AGS extract (AE) to replace synthesized AHLs. In this study, two SBRs were run in a fully aerobic environment and a short cycle (4 h) to culture AGS: R1 with AE adding; R2 served as control.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.
View Article and Find Full Text PDFWater Res
December 2024
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland. Electronic address:
Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!