The self-assembly of copolymers with one hydrophobic and one polyelectrolyte block in aqueous media: a dissipative particle dynamics study.

Phys Chem Chem Phys

Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/1, 165 02 Prague 6-Suchdol, Czech Republic.

Published: June 2016

The reversible self-assembly of symmetrical block copolymers consisting of one hydrophobic block and one ionizable polyelectrolyte block of the same length has been studied in aqueous solutions by dissipative particle dynamics simulations. In addition to three standard dissipative particle dynamics forces (conservative soft repulsion, dissipative and stochastic forces), explicit interaction between smeared charges on ions and on ionized polymer beads described by the electrostatic potential with appropriately localized charges was taken into account. The self-assembly and properties of formed core-shell micelles were investigated as functions of the degree of ionization for systems differing in the hydrophobicity of the non-ionized polyelectrolyte block and in the compatibility of the polymer blocks. This study shows that micelles undergo massive dissociation with increasing degree of ionization. The simulation data compare well with the predictions of scaling theories for systems with soluble polyelectrolytes on a semi-quantitative level and broaden the knowledge of systems in poor solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp00341aDOI Listing

Publication Analysis

Top Keywords

polyelectrolyte block
12
dissipative particle
12
particle dynamics
12
degree ionization
8
block
5
self-assembly copolymers
4
copolymers hydrophobic
4
hydrophobic polyelectrolyte
4
block aqueous
4
aqueous media
4

Similar Publications

Efficient Strategy for Protein Drug Carrier Design for Insights into the Protein-Polyelectrolyte Interaction.

Langmuir

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.

The protein carrier and encapsulation system based on polyelectrolytes plays crucial roles in drug research and development. Traditional methods such as isothermal titration calorimetry and molecular dynamics simulation have illuminated parts of this complex relationship. However, they fall short of capturing the full picture of the interaction during the carrier's fabrication and protein loading dynamics.

View Article and Find Full Text PDF

LL-37 regulates odontogenic differentiation of dental pulp stem cells in an inflammatory microenvironment.

Stem Cell Res Ther

December 2024

Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.

Background: Inflammation often causes irreversible damage to dental pulp tissue. Dental pulp stem cells (DPSCs), which have multidirectional differentiation ability, play critical roles in the repair and regeneration of pulp tissue. However, the presence of proinflammatory factors can affect DPSCs proliferation, differentiation, migration, and other functions.

View Article and Find Full Text PDF

Micropollutants removal from aquaculture water using layer-by-layer self-assembled nanofiltration membranes.

Water Res

March 2025

Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Micropollutants (MPs) in aquaculture water are directly related to human health, but largely overlooked. The conventional water treatment technologies could not effectively remove MPs, and new technologies have been pursued with high MP removal rate, low cost and small footprint. This paper reported the first endeavor of using layer-by-layer (LBL) hollow fiber (HF) nanofiltration (NF) membranes to treat real aquaculture water.

View Article and Find Full Text PDF

Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles.

J Phys Chem C Nanomater Interfaces

December 2024

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built.

View Article and Find Full Text PDF

Complex coacervate core micelles (C3Ms), formed through electrostatic interactions between oppositely charged block copolyelectrolytes, are effective delivery vehicles for hydrophilic biomacromolecules. This study investigates the impact of polymer architecture on the C3Ms structure by blending homopolyelectrolytes and diblock copolyelectrolytes as anionic counterparts for cationic diblock copolyelectrolytes. Our results show that the micellar structure, including core size, aggregation number, and corona characteristics, is precisely controlled by the fraction of homopolyelectrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!