Zika virus is a single-stranded RNA virus in the genus Flavivirus and is closely related to dengue, West Nile, Japanese encephalitis, and yellow fever viruses (1,2). Among flaviviruses, Zika and dengue virus share similar symptoms of infection, transmission cycles, and geographic distribution. Diagnostic testing for Zika virus infection can be accomplished using both molecular and serologic methods. For persons with suspected Zika virus disease, a positive real-time reverse transcription-polymerase chain reaction (rRT-PCR) result confirms Zika virus infection, but a negative rRT-PCR result does not exclude infection (3-7). In these cases, immunoglobulin (Ig) M and neutralizing antibody testing can identify additional recent Zika virus infections (6,7). However, Zika virus antibody test results can be difficult to interpret because of cross-reactivity with other flaviviruses, which can preclude identification of the specific infecting virus, especially when the person previously was infected with or vaccinated against a related flavivirus (8). This is important because the results of Zika and dengue virus testing will guide clinical management. Pregnant women with laboratory evidence of Zika virus infection should be evaluated and managed for possible adverse pregnancy outcomes and be reported to the U.S. Zika Pregnancy Registry or the Puerto Rico Zika Active Pregnancy Surveillance System for clinical follow-up (9,10). All patients with clinically suspected dengue should have proper management to reduce the risk for hemorrhage and shock (11). If serologic testing indicates recent flavivirus infection that could be caused by either Zika or dengue virus, patients should be clinically managed for both infections because they might have been infected with either virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15585/mmwr.mm6521e1 | DOI Listing |
Parasit Vectors
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.
Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
The demand for sensitive, rapid, and affordable diagnostic techniques has surged, particularly following the COVID-19 pandemic, driving the development of CRISPR-based diagnostic tools that utilize Cas effector proteins (such as Cas9, Cas12, and Cas13) as viable alternatives to traditional nucleic acid-based detection methods. These CRISPR systems, often integrated with biosensing and amplification technologies, provide precise, rapid, and portable diagnostics, making on-site testing without the need for extensive infrastructure feasible, especially in underserved or rural areas. In contrast, traditional diagnostic methods, while still essential, are often limited by the need for costly equipment and skilled operators, restricting their accessibility.
View Article and Find Full Text PDFImmunology
January 2025
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.
View Article and Find Full Text PDFRev Med Virol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!