Enzymatic Process for High-Yield Turanose Production and Its Potential Property as an Adipogenesis Regulator.

J Agric Food Chem

Department of Food Science and Technology, and Carbohydrate Bioproduct Research Center, Sejong University, Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea.

Published: June 2016

Turanose is a sucrose isomer naturally existing in honey and a promising functional sweetener due to its low glycemic response. In this study, the extrinsic fructose effect on turanose productivity was examined in Neisseria amylosucrase reaction. Turanose was produced, by increasing the amount of extrinsic fructose as a reaction modulator, with high concentration of sucrose substrate, which resulted in 73.7% of production yield. In physiological functionality test, lipid accumulation in 3T3-L1 preadipocytes in the presence of high amounts of pure glucose was attenuated by turanose substitution in a dose-dependent manner. Turanose treatments at concentrations representing 50%, 75%, and 100% of total glucose concentration in cell media significantly reduced lipid accumulation by 18%, 35%, and 72%, respectively, as compared to controls. This result suggested that turanose had a positive role in controlling adipogenesis, and enzymatic process of turanose production has a potential to develop a functional food ingredient for controlling obesity and related chronic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.5b05849DOI Listing

Publication Analysis

Top Keywords

enzymatic process
8
turanose
8
turanose production
8
production potential
8
extrinsic fructose
8
lipid accumulation
8
process high-yield
4
high-yield turanose
4
potential property
4
property adipogenesis
4

Similar Publications

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Ultrasound-Assisted Enzymatic Extraction of the Active Components from Stem and Bioactivity Comparison with .

Molecules

January 2025

Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, China.

(ASC) contains a variety of bioactive compounds and serves as an important traditional Chinese medicinal resource. However, its prolonged growth cycle and reliance on wild populations limit its practical use. To explore the potential of (ASF) as an alternative, this study focused on optimizing the extraction process and assessing the bioactivity of stem extracts.

View Article and Find Full Text PDF

Impact of Comb Cell Diameter on Nectar Evaporation Efficiency in Honey Bees.

Insects

January 2025

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

Honey bees transform nectar into honey through a combination of physical and chemical processes, with the physical process primarily involving the evaporation of excess water to concentrate the nectar. However, the factors affecting evaporation efficiency, such as evaporation duration, cell type, and bee species, remain incompletely understood. This study aimed to examine how these factors affect nectar evaporation efficiency during honey production.

View Article and Find Full Text PDF

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis.

Int J Mol Sci

January 2025

Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.

Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!