Molecular orbital engineering is a key ingredient for the design of organic devices. Intermolecular hybridization promises efficient charge carrier transport but usually requires dense packing for significant wave function overlap. Here we use scanning tunneling spectroscopy to spatially resolve the electronic structure of a surface-confined nanoporous supramolecular sheet of a prototypical hydrocarbon compound featuring terminal alkyne (-CCH) groups. Surprisingly, localized nanopore orbitals are observed, with their electron density centered in the cavities surrounded by the functional moieties. Density functional theory calculations reveal that these new electronic states originate from the intermolecular hybridization of six in-plane π-orbitals of the carbon-carbon triple bonds, exhibiting significant electronic splitting and an energy downshift of approximately 1 eV. Importantly, these nanopore states are distinct from previously reported interfacial states. We unravel the underlying connection between the formation of nanopore orbital and geometric arrangements of functional groups, thus demonstrating the generality of applying related orbital engineering concepts in various types of porous organic structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b01324 | DOI Listing |
Polymers (Basel)
January 2025
Mitsubishi Gas Chemical Company, Inc., Tokyo 100-8324, Japan.
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and ,-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage.
View Article and Find Full Text PDFMolecules
January 2025
Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States.
A dispersion-corrected density functional theory (DFT+D) method has been developed. It includes a nonhybrid dispersionless generalized gradient approximation (GGA) functional paired with a literature-parametrized dispersion function. The functional's 9 adjustable parameters were optimized using a training set of 589 benchmark interaction energies.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
G-quadruplex (G4), an important secondary structure of nucleic acids, is polymorphic in structure. G4 monomers can associate with each other to form multimers, which show better application performance than monomers in some aspects. G4 dimers, the simplest and most widespread multimeric structures, are often used as a representative for studying multimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!