Magnesium (Mg(2+)) plays an important role in the neural system, and yet scarcely any research has quantitatively analyzed the link between endogenous Mg(2+) level and memory. Using our original technique, we measured erythrocyte intracellular ionized Mg(2+) concentration (RBC [Mg(2+)]i), which linearly correlated to recognition and spatial memory in normal aging rats. In the brain, RBC [Mg(2+)]i significantly correlated to hippocampus extracellular fluid Mg(2+) concentration, and further correlated to hippocampal synapse density. Elevation of Mg(2+) intake in aged rats demonstrated an association between RBC [Mg(2+)]i increase and memory recovery. The therapeutic effect of Mg(2+) administration was inversely correlated to individual basal RBC [Mg(2+)]i. In summary, we provide a method to measure RBC [Mg(2+)]i, an ideal indicator of body Mg(2+) level. RBC [Mg(2+)]i represents rodent memory performance in our study, and might further serve as a potential biomarker for clinical differential diagnosis and precise treatment of Mg(2+)-deficiency-associated memory decline during aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890594 | PMC |
http://dx.doi.org/10.1038/srep26975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!