Nowadays, silver nanoparticles (AgNPs) are utilized in numerous applications, raising justified concerns about their release into the environment. This study demonstrates the potential to use freshwater crayfish as a benthic-zone indicator of nanosilver and ionic silver pollution. Crayfish were acclimated to 20 L aquaria filled with Hudson River water (HRW) and exposed for 14 days to widely used Creighton AgNPs and Ag(+) at doses of up to 360 μg L(-1) to surpass regulated water concentrations. The uptake and distribution of Ag in over 650 exoskeletons, gills, hepatopancreas and muscles samples were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) in conjunction with two complementary U.S. EPA-endorsed methods: the external calibration and the standard additions. Reflecting the environmental plasticity of the two investigated species, Orconectes virilis accumulated in a dose-dependent manner more Ag than Procambarus clarkii (on average 31% more Ag). Both species showed DNA damage and severe histological changes in the presence of Ag. However, Ag(+) generally led to higher Ag accumulations (28%) and was more toxic. By the harvest day, about 14 ± 9% of the 360 μg L(-1) of AgNP exposure in the HRW oxidized to Ag(+) and may have contributed to the observed toxicities and bioaccumulations. The hepatopancreas (1.5-17.4 μg of Ag g(-1) of tissue) was identified as the best tissue-indicator of AgNP pollution, while the gills (4.5-22.0 μg g(-1)) and hepatopancreas (2.5-16.7 μg g(-1)) complementarily monitored the presence of Ag(+).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b00511DOI Listing

Publication Analysis

Top Keywords

μg g-1
12
freshwater crayfish
8
benthic-zone indicator
8
indicator nanosilver
8
nanosilver ionic
8
ionic silver
8
silver pollution
8
360 μg
8
μg l-1
8
presence ag+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!