Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890778PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156519PLOS

Publication Analysis

Top Keywords

reproductive tissues
16
cold stress
12
differential expression
12
mirna families
12
study conducted
8
expressed mirnas
8
tolerant genotype
8
mirnas differential
8
tissues anther
8
anther ovary
8

Similar Publications

PANoptosis in intestinal epithelium: its significance in inflammatory bowel disease and a potential novel therapeutic target for natural products.

Front Immunol

January 2025

Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.

The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.

View Article and Find Full Text PDF

Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used to convert proton dose into an equivalent photon dose. However, RBE varies with tissue type, fraction dose, and beam quality parameters beyond dose such as linear energy transfer (LET) raising concerns about increased local effectiveness and potential toxicity.

View Article and Find Full Text PDF

Bovine genital leptospirosis (BGL) is a silent and chronic reproductive syndrome associated with reproductive failures that result in animal suffering and substantial financial losses for farmers. Important aspects of the interactions between the host and the pathogen during chronic leptospirosis have been well described in the kidney, but little is known about the genital infection mechanisms. The present study sheds light on the pathophysiology of BGL based on comparative genomic analysis of renal versus genital isolates of genomes, an endemic species on Latin America.

View Article and Find Full Text PDF

Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.

View Article and Find Full Text PDF

PLK3 weakens antioxidant defense and inhibits proliferation of porcine Leydig cells under oxidative stress.

Sci Rep

January 2025

Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!