AI Article Synopsis

  • A key challenge in studying protein-ligand interactions is distinguishing local binding site changes from global conformational shifts, especially with low-affinity ligands.
  • Amide hydrogen deuterium exchange mass spectrometry (HDXMS) is an effective technique that provides insights into both high-affinity and transient interactions, particularly in this study focused on the ATPase domain of Hsp90.
  • HDXMS can identify binding sites and assess allosteric effects, making it a valuable method for screening compounds and enhancing fragment-based ligand discovery.

Article Abstract

A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890749PMC
http://dx.doi.org/10.1371/journal.pcbi.1004840DOI Listing

Publication Analysis

Top Keywords

low affinity
12
affinity ligands
12
implications fragment-based
8
protein-ligand interactions
8
changes binding
8
binding sites
8
long range
8
range conformational
8
conformational changes
8
dynamics high
8

Similar Publications

Mice are one of the most common biological models for laboratory use. However, wild-type mice are not susceptible to COVID-19 infection due to the low affinity of mouse ACE2, the entry protein for SARS-CoV-2. Although mice with human ACE2 (hACE2) driven by Ace2 promoter reflect its tissue specificity, these animals exhibit low ACE2 expression, potentially limiting their fidelity in mimicking COVID-19 manifestations and their utility in viral studies.

View Article and Find Full Text PDF

High-Affinity Lectin Ligands Enable the Detection of Pathogenic Biofilms: Implications for Diagnostics and Therapy.

JACS Au

December 2024

Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.

is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.

View Article and Find Full Text PDF

Aptamers are oligonucleotide-based affinity reagents that are increasingly being used in various applications. Systematic evolution of ligands by exponential enrichment (SELEX) has been widely used to isolate aptamers for small-molecule targets, but it remains challenging to generate aptamers with high affinity and specificity for targets with few functional groups. To address this challenge, we have systematically evaluated strategies for optimizing the isolation of aptamers for (+)-methamphetamine, a target for which previously reported aptamers have weak or no binding affinity.

View Article and Find Full Text PDF

PqsE and RhlR, key regulators of the Pseudomonas aeruginosa quorum sensing (QS) system, form a hetero-tetrameric complex essential for controlling the expression of virulence factors such as pyocyanin. The interaction between the PqsE homodimer and the RhlR homodimer bound to C4-HSL, enables RhlR to bind low-affinity promoters, thereby influencing gene regulation. Recent studies suggest that RhlR transcriptional activity is modulated by temperature, exhibiting higher activity at environmental temperatures (25 °C) compared to mammalian body temperature (37 °C).

View Article and Find Full Text PDF

The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!