Sepsis is an uncontrolled systemic inflammatory response against an infection and a major public health issue worldwide. This condition affects several organs, and, when caused by Gram-negative bacteria, kidneys are particularly damaged. Due to the importance of renin-angiotensin system (RAS) in regulating renal function, in the present study, we aimed to investigate the effects of endotoxemia over the renal RAS. Wistar rats were injected with Escherichia coli lipopolysaccharide (LPS) (4 mg/kg), mimicking the endotoxemia induced by Gram-negative bacteria. Three days after treatment, body mass, blood pressure, and plasma nitric oxide (NO) were reduced, indicating that endotoxemia triggered cardiovascular and metabolic consequences and that hypotension was maintained by NO-independent mechanisms. Regarding the effects in renal tissue, inducible NO synthase (iNOS) was diminished, but no changes in the renal level of NO were detected. RAS was also highly affected by endotoxemia, since renin, angiotensin-converting enzyme (ACE), and ACE2 activities were altered in renal tissue. Although these enzymes were modulated, only angiotensin (ANG) II was augmented in kidneys; ANG I and ANG 1-7 levels were not influenced by LPS. Cathepsin G and chymase activities were increased in the endotoxemia group, suggesting alternative pathways for ANG II formation. Taken together, our data suggest the activation of noncanonical pathways for ANG II production and the presence of renal vasoconstriction and tissue damage in our animal model. In summary, the systemic administration of LPS affects renal RAS, what may contribute for several deleterious effects of endotoxemia over kidneys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00121.2014 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFChembiochem
January 2025
Xidian University, School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, 710126, Xi'an, CHINA.
The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA.
For nearly a century, fundamental observations that prostate cancer (PCa) cells nearly always require AR stimulation for sustained proliferation have led to a unidirectional quest to abrogate such a pathway. Similarly focused have been efforts to understand AR-driven processes in the context of elevated expression of its target genes, and much less so on products that become overexpressed when AR signaling is suppressed. Treatment with ARSI results in an increased expression of the TLK1B splice variant via a 'translational' derepression driven by the compensatory mTOR activation and consequent activation of the TLK1 > NEK1 > ATR > Chk1 and NEK1 > YAP axes.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 48033 Ferrara, Italy.
From a cancer-centric perspective, radiotherapy has been primarily viewed as a localised treatment modality, targeting cancer tissues with ionising radiation to induce DNA damage and cell death [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!