Chloroplast-Specific in Vivo Ca2+ Imaging Using Yellow Cameleon Fluorescent Protein Sensors Reveals Organelle-Autonomous Ca2+ Signatures in the Stroma.

Plant Physiol

Department of Biosciences, University of Milan, 20133 Milan, Italy (G.L., F.G.D., S.B., A.C.);Department of Biology, University of Padua, Italy, 35131 Padua, Italy (G.L., M.Z.);Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany (S.We., J.K.);Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.Wa., M.S.); andInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.).

Published: August 2016

In eukaryotes, subcellular compartments such as mitochondria, the endoplasmic reticulum, lysosomes, and vacuoles have the capacity for Ca(2+) transport across their membranes to modulate the activity of compartmentalized enzymes or to convey specific cellular signaling events. In plants, it has been suggested that chloroplasts also display Ca(2+) regulation. So far, monitoring of stromal Ca(2+) dynamics in vivo has exclusively relied on using the luminescent Ca(2+) probe aequorin. However, this technique is limited in resolution and can only provide a readout averaged over chloroplast populations from different cells and tissues. Here, we present a toolkit of Arabidopsis (Arabidopsis thaliana) Ca(2+) sensor lines expressing plastid-targeted FRET-based Yellow Cameleon (YC) sensors. We demonstrate that the probes reliably report in vivo Ca(2+) dynamics in the stroma of root plastids in response to extracellular ATP and of leaf mesophyll and guard cell chloroplasts during light-to-low-intensity blue light illumination transition. Applying YC sensing of stromal Ca(2+) dynamics to single chloroplasts, we confirm findings of gradual, sustained stromal Ca(2+) increases at the tissue level after light-to-low-intensity blue light illumination transitions, but monitor transient Ca(2+) spiking as a distinct and previously unknown component of stromal Ca(2+) signatures. Spiking was dependent on the availability of cytosolic Ca(2+) but not synchronized between the chloroplasts of a cell. In contrast, the gradual sustained Ca(2+) increase occurred independent of cytosolic Ca(2+), suggesting intraorganellar Ca(2+) release. We demonstrate the capacity of the YC sensor toolkit to identify novel, fundamental facets of chloroplast Ca(2+) dynamics and to refine the understanding of plastidial Ca(2+) regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972287PMC
http://dx.doi.org/10.1104/pp.16.00652DOI Listing

Publication Analysis

Top Keywords

ca2+
18
stromal ca2+
16
ca2+ dynamics
16
vivo ca2+
8
yellow cameleon
8
ca2+ signatures
8
ca2+ regulation
8
light-to-low-intensity blue
8
blue light
8
light illumination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!