Although telomere length is genetically determined, mouse embryonic stem (ES) cells with telomeres of twice the normal size have been generated. Here, we use such ES cells with 'hyper-long' telomeres, which also express green fluorescent protein (GFP), to generate chimaeric mice containing cells with both hyper-long and normal telomeres. We show that chimaeric mice contain GFP-positive cells in all mouse tissues, display normal tissue histology and normal survival. Both hyper-long and normal telomeres shorten with age, but GFP-positive cells retain longer telomeres as mice age. Chimaeric mice with hyper-long telomeres also accumulate fewer cells with short telomeres and less DNA damage with age, and express lower levels of p53. In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. We further show that wound-healing rates in the skin are increased in chimaeric mice. Our work demonstrates that mice with functional, longer and better preserved telomeres can be generated without the need for genetic manipulations, such as TERT overexpression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895768 | PMC |
http://dx.doi.org/10.1038/ncomms11739 | DOI Listing |
Nat Biomed Eng
December 2024
Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Resistance to chimaeric antigen receptor (CAR) T cell therapy develops through multiple mechanisms, most notably antigen loss and tumour-induced immune suppression. It has been suggested that T cells expressing multiple CARs may overcome the resistance of tumours and that T cells expressing receptors that switch inhibitory immune-checkpoint signals into costimulatory signals may enhance the activity of the T cells in the tumour microenvironment. However, engineering multiple features into a single T cell product is difficult because of the transgene-packaging constraints of current gene-delivery vectors.
View Article and Find Full Text PDFTheriogenology
March 2025
Department of Embryology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland. Electronic address:
In this work, we aimed to investigate whether Pecam-1 (platelet endothelial cell adhesion molecule 1) surface protein of ICM cells is involved in primitive endoderm (PrE) differentiation. For this purpose, we used embryonic stem cells (ESCs) as an in vitro model for ICM cells, and induced differentiation of ESCs into PrE cells by retinoic acid (RA). Using immunostaining, we observed that at the protein level Pecam-1 diminishes in the early stages of ESC differentiation towards PrE.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
Gustave Roussy, Paris-Saclay University, INSERM U1015, Villejuif, France.
Allogeneic chimaeric antigen receptor T cells (allo-CAR T cells) derived from healthy donors could provide rapid access to standardized and affordable batches of therapeutic cells if their rejection by the host's immune system is avoided. Here, by means of an in vivo genome-wide CRISPR knockout screen, we show that the deletion of Fas or B2m in allo- T cells increases their survival in immunocompetent mice. Human B2M allo-CAR T cells become highly sensitive to rejection mediated by natural killer (NK) cells, whereas FAS CAR T cells expressing normal levels of human leukocyte antigen I remain resistant to NK cells.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8 T cells and to the suppression of the formation of regulatory T cells.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!