The photophysical behavior of pyrrolocytosine (PC), a fluorescent base analogue of cytosine, has been investigated using theoretical approaches. The similarities between the PC and cytosine structures allow PC to maintain the pseudo-Watson-Crick base-pairing arrangement with guanine. Cytosine, similar to the other natural nucleobases, is practically non-fluorescent, because of ultrafast radiationless decay occurring through conical intersections. PC displays a much higher fluorescence quantum yield than cytosine, making it an effective fluorescent marker to study the structure, function, and dynamics of DNA/RNA complexes. Similar to 2-aminopurine, a constitutional isomer of adenine that base-pairs with thymine, PC's fluorescence is quenched when it is incorporated into a dinucleotide or a trinucleotide. In this work we examine the photophysical properties of isolated PC, microhydrated PC, as well as, complexes where PC is either base-stacked or hydrogen-bonded with guanine. Our results indicate that hydration affects the radiationless decay pathways in PC by destabilizing conical intersections. The calculations of dimers and trimers show that the radiative decay is affected by π stacking, while the presence of charge transfer states between PC and guanine may contribute to radiationless decay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030112 | PMC |
http://dx.doi.org/10.1039/c6cp01559j | DOI Listing |
Nat Commun
November 2024
Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.
The fate of thymine upon excitation by ultraviolet radiation has been the subject of intense debate. Today, it is widely believed that its ultrafast excited state gas phase decay stems from a radiationless transition from the bright ππ* state to a dark nπ* state. However, conflicting theoretical predictions have made the experimental data difficult to interpret.
View Article and Find Full Text PDFJ Chem Phys
September 2024
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
It is challenging to simulate open quantum systems that are connected to a reservoir through multiple channels. For example, vibrations may induce fluctuations in both energy gaps and electronic couplings, which represent two independent channels of system-bath couplings. Systems of this kind are ubiquitous in the processes of excited state radiationless decay.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2024
Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea.
Multistate nonadiabatic dynamics combined with Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory (MRSF-TDDFT) were performed to investigate the chemoexcitation dynamics of firefly dioxetanone (FDO in S) to oxyluciferin (OxyLH in S) and its subsequent decay dynamics. The formation of oxyluciferin occurs within approximately 100 fs and is primarily controlled by oscillatory CO decarboxylation. Unexpected radiationless decay from oxyluciferin was also observed, facilitated by intramolecular rotation.
View Article and Find Full Text PDFInorg Chem
September 2024
Institute for Molecular Science (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
The theoretical calculation of the temperature-dependent nonradiative decay rate constant is fundamental for predicting the usefulness of transition-metal complexes for technological applications. Such a computation implies the determination of the barriers separating the emitting triplet state from metal-centered states, which are key mediators of this type of radiationless relaxation. We here do so for the two green-emitting cyclometalated Ir(III) complexes, [Ir(ppy)(pyim)] and [Ir(diFppy)(dtb-bpy)], of general formula [Ir(CN)(NN)], performing DFT calculations with both B3LYP and PBE0 functionals.
View Article and Find Full Text PDFJ Phys Chem A
July 2024
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ London, U.K.
We report a protocol for the implementation of "reaction path following" from a transition state through a conical intersection, including both the path curvature induced by the derivative coupling and the corresponding induced electronic coherences. This protocol focuses on the "central" Gaussian wavepacket (initially unexcited) in the quantum Ehrenfest (QuEh) method. Like the reaction path following, the normal mode corresponding to the imaginary frequency at the transition state is given an initial momentum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!