Down-regulation of Risa improves insulin sensitivity by enhancing autophagy.

FASEB J

Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and School of Life Science and Technology, ShanghaiTech University, Shanghai, China

Published: September 2016

It has been reported that some small noncoding RNAs are involved in the regulation of insulin sensitivity. However, whether long noncoding RNAs also participate in the regulation of insulin sensitivity is still largely unknown. We identified and characterized a long noncoding RNA, regulator of insulin sensitivity and autophagy (Risa), which is a poly(A)(+) cytoplasmic RNA. Overexpression of Risa in mouse primary hepatocytes or C2C12 myotubes attenuated insulin-stimulated phosphorylation of insulin receptor, Akt, and Gsk3β, and knockdown of Risa alleviated insulin resistance. Further studies showed that overexpression of Risa in hepatocytes or myotubes decreased autophagy, and knockdown of Risa up-regulated autophagy. Moreover, knockdown of Atg7 or -5 significantly inhibited the effect of knockdown of Risa on insulin resistance, suggesting that knockdown of Risa alleviated insulin resistance via enhancing autophagy. In addition, tail vein injection of adenovirus to knock down Risa enhanced insulin sensitivity and hepatic autophagy in both C57BL/6 and ob/ob mice. Taken together, the data demonstrate that Risa regulates insulin sensitivity by affecting autophagy and suggest that Risa is a potential target for treating insulin-resistance-related diseases.-Wang, Y., Hu, Y., Sun, C., Zhuo, S., He, Z., Wang, H., Yan, M., Liu, J., Luan, Y., Dai, C., Yang, Y., Huang, R., Zhou, B., Zhang, F., Zhai, Q. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201500058RDOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
28
knockdown risa
16
enhancing autophagy
12
insulin resistance
12
insulin
11
risa
11
down-regulation risa
8
risa improves
8
improves insulin
8
sensitivity enhancing
8

Similar Publications

Background: The potential therapeutic role of magnesium (Mg) in type 2 diabetes mellitus (T2DM) remains insufficiently studied despite its known involvement in critical processes like lipid metabolism and insulin sensitivity. This study examines the impact of Mg-focused nutritional education on lipid profile parameters, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients.

Methods: Thirty participants with T2DM were recruited for this within-subject experimental study.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Purpose Of The Review: Ultra-processed foods (UPFs) represent foods that have undergone substantial industrial processing, such as the addition of preservatives and various other ingredients, thereby making them more tasty, appealing and easy to consume. UPFs are often rich in sugars, saturated fats and salt, while they are low in essential nutrients.The aim of this review is to examine the relationship between the widespread consumption of UPFs and the development of obesity among children and adolescents.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Association between the triglyceride glucose index and acute kidney injury following traumatic brain injury.

Sci Rep

January 2025

Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian, Medical University, Quanzhou, 362000, China.

Acute kidney injury (AKI) is associated with adverse hospitalization. Previous studies have reported that an elevated triglyceride glucose (TyG) index is significantly associated with the development of AKI in patients with cardiovascular disease, as well as in those undergoing surgery; however, the potential of the TyG index to predict AKI following neurotrauma remains unclear. Patients diagnosed with traumatic brain injury (TBI) in Chinese tertiary hospitals between January 2014 and December 2023 were included in this retrospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!