Phospholipids are the main constituents of brain membranes. Formation of new membranes requires that uridine, the omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA), and choline, the three circulating precursors of major phospholipids, interact via the Kennedy pathway. Supplementation of laboratory rodents with uridine, DHA and choline enhances the amount of brain membranes as well as synaptic proteins and increases the number of dendritic spines, the essential cytological precursor of new synapses. Hence, the newly formed membranes are utilized for synaptogenesis which underlies increased synaptic functioning evidenced by enhanced neurotransmission and cognition. In addition, this supplementation ameliorates the degeneration in a rat model of Parkinson's disease and mouse models of Alzheimer's disease (AD) when used in combination with several vitamins and cofactors. Hence, accumulating evidence shows that increasing the availability of phospholipid precursors, vitamins and cofactors to the brain through dietary supplementation enhances the formation of new synapses and provides protection under neurodegenerative conditions. The combination has been tested in clinical trials and a medication has been marketed for early-stage AD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12017-016-8414-x | DOI Listing |
Nat Metab
January 2025
Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.
View Article and Find Full Text PDFHepatol Commun
December 2024
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Background: Sphingosine-1 phosphate (S1P) is a bioactive lipid molecule that modulates inflammation and hepatic lipid metabolism in MASLD, which affects 1 in 3 people and increases the risk of liver fibrosis and hepatic cancer. S1P can be generated by 2 isoforms of sphingosine kinase (SphK). SphK1 is well-studied in metabolic diseases.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Unlabelled: Human cytomegalovirus (HCMV) modulates numerous cellular pathways to facilitate infection, including key components in cellular iron homeostasis. Iron is essential to many cellular processes but, if present in excess, drives cell death through ferroptosis. Ferroptosis is a process that is dependent upon the accumulation of oxidatively damaged phospholipids (lipid peroxides); when these lipid peroxides accumulate in membranes, this culminates in plasma membrane rupture and eventual cell lysis.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Pharmacological treatment of diabetes mellitus-induced erectile dysfunction (DMED) has become increasingly challenging due to the limited efficacy of phosphodiesterase type 5 inhibitors (PDE5i). As the global prevalence of DM continues, there is a critical need for novel therapeutic strategies to address DMED. In our previous studies, we found that Glutathione peroxidase 4 (GPX4), a ferroptosis inhibitor, can ameliorate DMED in diabetic rats.
View Article and Find Full Text PDFPhytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!