Control of grain size and rice yield by GL2-mediated brassinosteroid responses.

Nat Plants

State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Published: December 2015

AI Article Synopsis

  • Food shortages are a major global concern due to rising populations and less available farmland.
  • Researchers have identified a rice grain length-associated gene (GL2) that can enhance grain weight and yield significantly.
  • The study reveals how GL2 interacts with brassinosteroid signaling to regulate grain development, providing insights for improving crop productivity through genetic breeding.

Article Abstract

Given the continuously growing population and decreasing arable land, food shortage is becoming one of the most serious global problems in this century(1). Grain size is one of the determining factors for grain yield and thus is a prime target for genetic breeding(2,3). Although a number of quantitative trait loci (QTLs) associated with rice grain size have been identified in the past decade, mechanisms underlying their functions remain largely unknown(4,5). Here we show that a grain-length-associated QTL, GL2, has the potential to improve grain weight and grain yield up to 27.1% and 16.6%, respectively. We also show that GL2 is allelic to OsGRF4 and that it contains mutations in the miR396 targeting sequence. Because of the mutation, GL2 has a moderately increased expression level, which consequently activates brassinosteroid responses by upregulating a large number of brassinosteroid-induced genes to promote grain development. Furthermore, we found that GSK2, the central negative regulator of rice brassinosteroid signalling, directly interacts with OsGRF4 and inhibits its transcription activation activity to mediate the specific regulation of grain length by the hormone. Thus, this work demonstrates the feasibility of modulating specific brassinosteroid responses to improve plant productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nplants.2015.195DOI Listing

Publication Analysis

Top Keywords

grain size
12
brassinosteroid responses
12
grain yield
8
grain
7
control grain
4
size rice
4
rice yield
4
yield gl2-mediated
4
brassinosteroid
4
gl2-mediated brassinosteroid
4

Similar Publications

Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

LiFeMnPO (0 < < 1) has a high operating voltage range and theoretical energy density, but its actual capacity decreased due to its low electronic conductivity. To overcome this problem, we successfully prepared LiFeMnPO/C (LFMP/C) with a uniform carbon coating by a one-step solvothermal method using bamboo shavings as the carbon source. The results showed that heating at a reaction temperature of 180 °C for 18 h was the optimal synthesis condition to obtain LFMP/C.

View Article and Find Full Text PDF

Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆H, but lower setback (SB), and starch granule size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!