Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bone has the capacity to regenerate and repair itself. However, this capacity may be impaired or lost depending on the size of the defect or the presence of certain disease states. In this review, we discuss the key principles underlying bone healing, efforts to characterize bone stem and progenitor cell populations, and the current status of translational and clinical studies in cell-based bone tissue engineering. Though barriers to clinical implementation still exist, the application of stem and progenitor cell populations to bone engineering strategies has the potential to profoundly impact regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053855 | PMC |
http://dx.doi.org/10.1007/s12015-016-9665-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!