A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4948294 | DOI Listing |
J Proteome Res
January 2025
Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Data-independent acquisition (DIA) on ion mobility mass spectrometers enables deep proteome coverage and high data completeness in large-scale proteomics studies. For advanced acquisition schemes such as parallel accumulation serial fragmentation-based DIA (diaPASEF) stability of ion mobility (1/K) over time is crucial for consistent data quality. We found that minor changes in environmental air pressure systematically affect the vacuum pressure in the TIMS analyzer, causing ion mobility shifts.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.
View Article and Find Full Text PDFSe Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFACS Nano
January 2025
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
The development of an atmospheric pressure interface (API) with a high ion transfer efficiency and wide mass range is advantageous for the performance improvement of mass spectrometry (MS) instruments. In this work, a novel ion guide, namely, the double-helix electrode ion funnel (DHE-IF), has been developed to enhance the ion transmission over a wide mass range in the rough vacuum region. The DHE-IF consists of two funnel-shaped helix electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!