How the initial level of visibility and limited resource affect the evolution of cooperation.

Sci Rep

Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.

Published: June 2016

This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players' strategies under different network structure. We perform the prisoner's dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals' payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890014PMC
http://dx.doi.org/10.1038/srep27191DOI Listing

Publication Analysis

Top Keywords

lattice network
16
scale-free network
16
level visibility
12
network
12
initial level
8
visibility limited
8
limited resource
8
resource affect
8
affect evolution
8
network structure
8

Similar Publications

Particle-based reaction-diffusion models offer a high-resolution alternative to the continuum reaction-diffusion approach, capturing the discrete and volume-excluding nature of molecules undergoing stochastic dynamics. These methods are thus uniquely capable of simulating explicit self-assembly of particles into higher-order structures like filaments, spherical cages, or heterogeneous macromolecular complexes, which are ubiquitous across living systems and in materials design. The disadvantage of these high-resolution methods is their increased computational cost.

View Article and Find Full Text PDF

Electrochemical Synthesis and Conductivity Fine Tuning of the 2D Iron-Quinoid Metal-Organic Framework.

ACS Appl Mater Interfaces

December 2024

Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.

Electrically conducting 2D metal-organic frameworks (MOFs) with hexagonal 2D lattices like other 2D van der Waals stacked materials are attracting increasing interest. The conductivity can be effectively regulated through electronic structure adjustment thanks to the chemical and physical flexibility and adjustability of MOFs. In this regard, through a simple and rapid electrochemical method, 2D conductive iron-quinoid MOFs were synthesized.

View Article and Find Full Text PDF

InAs semiconductor quantum dots (QDs) emitting in the near-infrared are promising platforms for on-demand single-photon sources and spin-photon interfaces. However, the realization of quantum-photonic nanodevices emitting in the telecom windows with similar performance remains an open challenge. In particular, nanophotonic devices incorporating quantum light emitting diodes in the telecom C-band based on GaAs substrates are still lacking due to the relaxation of the lattice constant along the InGaAs graded layer which makes the implementation of electrically contacted devices challenging.

View Article and Find Full Text PDF

Boosting Anionic Redox Reactions of Li-Rich Cathodes through Lattice Oxygen and Li-Ion Kinetics Modulation in Working All-Solid-State Batteries.

Adv Mater

December 2024

Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

The use of lithium-rich manganese-based oxides (LRMOs) as the cathode in all-solid-state batteries (ASSBs) holds great potential for realizing high energy density over 600 Wh kg. However, their implementation is significantly hindered by the sluggish kinetics and inferior reversibility of anionic redox reactions of oxygen in ASSBs. In this contribution, boron ions (B) doping and 3D LiBO (LBO) ionic networks construction are synchronously introduced into LRMO materials (LBO-LRMO) by mechanochemical and subsequent thermally driven diffusion method.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!