The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4-DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3-DNA complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4952441 | DOI Listing |
J Int Soc Sports Nutr
December 2025
University of Bologna-Alma Mater Studiorum, Department of Quality of Life Sciences, Bologna, Italy.
Background: Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article "Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI).
View Article and Find Full Text PDFNat Rev Microbiol
January 2025
US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both in vitro and in silico approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!