A theoretical rate constant for the associative detachment reaction Rb((2)S) + OH(-)((1)Σ(+)) → RbOH((1)Σ(+)) + e(-) of 4 × 10(-10) cm(3) s(-1) at 300 K has been calculated. This result agrees with the experimental rate constant of 2-1 (+2)×10(-10)cm(3)s(-1) obtained by Deiglmayr et al. [Phys. Rev. A 86, 043438 (2012)] for a temperature between 200 K and 600 K. A Langevin-based dynamics which depends on the crossing point between the anion (RbOH(-)) and neutral (RbOH) potential energy surfaces has been used. The calculations were performed using the ECP28MDF effective core potential to describe the rubidium atom at the CCSD(T) level of theory and extended basis sets. The effect of ECPs and basis set on the height of the crossing point, and hence the rate constant, has been investigated. The temperature dependence of the latter is also discussed. Preliminary work on the potential energy surface for the excited reaction channel Rb((2)P) + OH(-)((1)Σ(+)) calculated at the CASSCF-icMRCI level of theory is presented. We qualitatively discuss the charge transfer and associative detachment reactions arising from this excited entrance channel.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4950784DOI Listing

Publication Analysis

Top Keywords

rate constant
12
rb2p oh-1Σ+
8
associative detachment
8
crossing point
8
potential energy
8
level theory
8
initio study
4
study reactive
4
reactive collisions
4
collisions rb2s
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!