In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852455 | PMC |
http://dx.doi.org/10.1098/rsob.150263 | DOI Listing |
J Basic Microbiol
November 2024
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
Bacteria have a very well-regulated mechanism for chromosome segregation and cell division. This process requires a large number of complex proteins to participate and mediate their functionality. Among these complex proteins, ParA and ParB play a vital role for the faithful segregation of chromosome.
View Article and Find Full Text PDFMol Microbiol
August 2024
Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse Paul Sabatier, UPS, Toulouse, France.
In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites.
View Article and Find Full Text PDFNucleic Acids Res
August 2024
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The tripartite ParABS system mediates chromosome segregation in the majority of bacterial species. Typically, DNA-bound ParB proteins around the parS sites condense the chromosomal DNA into a higher-order multimeric nucleoprotein complex for the ParA-driven partition. Despite extensive studies, the molecular mechanism underlying the dynamic assembly of the partition complex remains unclear.
View Article and Find Full Text PDFNucleic Acids Res
July 2024
Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and Centre for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany.
The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!