Adaptive neuron-to-EMG decoder training for FES neuroprostheses.

J Neural Eng

Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.

Published: August 2016

Objective: We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals.

Approach: Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns.

Main Results: We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals.

Significance: This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by including data from multiple grasping tasks in the training of the neuron-to-EMG decoder. Our approach would make it possible for persons with SCI to grasp objects with their own hands, using near-normal motor intent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718884PMC
http://dx.doi.org/10.1088/1741-2560/13/4/046009DOI Listing

Publication Analysis

Top Keywords

emg
10
force
10
neuron-to-emg decoder
8
training emg
8
emg decoders
8
emg decoder
8
muscle activity
8
target force
8
optimal emg
8
offline online
8

Similar Publications

Purpose: to characterize mastication and electrical activation of the masseter and anterior temporalis muscles in children and adolescents with osteogenesis imperfecta (OI), and relate results to guided occlusion and occlusal interference.

Methods: This observational, analytical cross-sectional study included 22 subjects divided into mild OI (MOI) (type 1) (n=15) and moderate-to-severe OI (MSOI) (types 3, 4, and 5) (n=7) groups. The Orofacial Myofunctional Evaluation with Scores (OMES) form was used to evaluate the clinical aspects of mastication.

View Article and Find Full Text PDF

Late-Onset Krabbe Disease: Case Report of Two Patients in a Chinese Family and Literature Review.

Mol Genet Genomic Med

February 2025

Department of Orthopeadic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Krabbe disease (KD; globoid cell leucodystrophy) is a rare autosomal recessive lipid storage disorder that affects the white matter of the peripheral and central nervous. Late-onset KD is less frequently diagnosed and often presents with milder symptoms, making accurate diagnosis challenging, especially when distinguishing it from peripheral neuropathy. In this report, we present two cases of late-onset KD in a Chinese family.

View Article and Find Full Text PDF

Objective: This study investigated upper limb kinematics and muscle co-activation in wheelchair tennis players during the forehand stroke. By analyzing linear and angular kinematic variables alongside muscle co-activation patterns, the study aimed to provide insights into the biomechanical mechanisms supporting forehand stroke performance.

Method: Fifteen professional male wheelchair tennis players (height: 163.

View Article and Find Full Text PDF

Glucagon: a potential protective factor against peripheral nerve compromise in patients with type 2 diabetes and obesity.

Diabetol Metab Syndr

January 2025

Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No.666 Shengli Road, Nantong, 226001, China.

Background: Increased glucagon levels are now recognized as a pathophysiological adaptation to counteract overnutrition in type 2 diabetes (T2D). This study aimed to elucidate the role of glucagon in peripheral nerve function in patients with T2D with different body mass indices (BMIs).

Methods: We consecutively enrolled 174 individuals with T2D and obesity (T2D/OB, BMI ≥ 28 kg/m), and 480 individuals with T2D and nonobesity (T2D/non-OB, BMI < 28 kg/m), all of whom underwent oral glucose tolerance tests to determine the area under the curve for glucagon (AUC).

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!