FGF13 (FHF2), the major fibroblast growth factor homologous factor (FHF) in rodent heart, directly binds to the C-terminus of the main cardiac sodium channel, Na1.5. Knockdown of FGF13 in cardiomyocytes induces slowed ventricular conduction by altering Na1.5 function. FGF13 has five splice variants, each of which possess the same core region and C terminus but differing in their respective N termini. Whether and how these alternatively spliced N termini impart isoform-specific regulation of Na1.5, however, has not been reported. Here, we exploited a heterologous expression to explore the specific modulatory effects of FGF13 splice variants FGF13S, FGF13U and FGF13YV on Na1.5 function. We found these three splice variants differentially modulated Na1.5 current density. Although steady-state activation was unaltered by any of the FGF13 isoforms (compared to control cells expressing Nav1.5 but not expressing FGF13), open-state fast inactivation and closed-state fast inactivation were markedly slowed, steady-state availability was significantly shifted toward the depolarizing direction, and the window current was increased by each of FGF13 isoforms. Most strikingly, FGF13S hastened the rate of Na1.5 entry into the slow inactivation state and induced a dramatic slowing of recovery from inactivation, which caused a large decrease in current after either low or high frequency stimulation. Overall, these data showed the diversity of the roles of the FGF13 N-termini in Na1.5 channel modulation and suggested the importance of isoform-specific regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988462PMC
http://dx.doi.org/10.1080/19336950.2016.1190055DOI Listing

Publication Analysis

Top Keywords

splice variants
12
fgf13
8
cardiac sodium
8
sodium channel
8
na15
8
channel na15
8
na15 function
8
fgf13 splice
8
isoform-specific regulation
8
fgf13 isoforms
8

Similar Publications

Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.

Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.

Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.

View Article and Find Full Text PDF

Deep learning analyses of splicing variants identify the link of PCP4 with amyotrophic lateral sclerosis.

Brain

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.

View Article and Find Full Text PDF

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway.

iScience

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.

Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC.

View Article and Find Full Text PDF

TERT de novo mutation-associated dyskeratosis congenita and porto-sinusoidal vascular disease: a case report.

J Med Case Rep

January 2025

Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.

Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!