Background: Alzheimer's disease (AD) is a neurodegenerative disease of the brain and the most common form of dementia in the elderly. Aneuploidy, a state in which cells have an abnormal number of chromosomes, has been proposed to play a role in neurodegeneration in AD patients. Several studies using fluorescence in situ hybridization have shown that the brains of AD patients contain an increased number of aneuploid cells. However, because the reported rate of aneuploidy in neurons ranges widely, a more sensitive method is needed to establish a possible role of aneuploidy in AD pathology.
Results: In the current study, we used a novel single-cell whole genome sequencing (scWGS) approach to assess aneuploidy in isolated neurons from the frontal cortex of normal control individuals (n = 6) and patients with AD (n = 10). The sensitivity and specificity of our method was shown by the presence of three copies of chromosome 21 in all analyzed neuronal nuclei of a Down's syndrome sample (n = 36). Very low levels of aneuploidy were found in the brains from control individuals (n = 589) and AD patients (n = 893). In contrast to other studies, we observe no selective gain of chromosomes 17 or 21 in neurons of AD patients.
Conclusion: scWGS showed no evidence for common aneuploidy in normal and AD neurons. Therefore, our results do not support an important role for aneuploidy in neuronal cells in the pathogenesis of AD. This will need to be confirmed by future studies in larger cohorts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888403 | PMC |
http://dx.doi.org/10.1186/s13059-016-0976-2 | DOI Listing |
Sci China Life Sci
January 2025
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States.
Single-cell technologies have enabled the high-dimensional characterization of cell populations at an unprecedented scale. The innate complexity and increasing volume of data pose significant computational and analytical challenges, especially in comparative studies delineating cellular architectures across various biological conditions (i.e.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.
Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.
View Article and Find Full Text PDFDiscov Oncol
January 2025
The School Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
The prognosis and treatment efficacy of lung adenocarcinoma (LUAD), a disease with a high incidence, remains unsatisfactory. Identifying new biomarkers and therapeutic targets for LUAD is essential. Chromosomal assembly factor 1B (CHAF1B), a p60 component of the CAF-1 complex, is closely linked to tumor incidence and cell proliferation.
View Article and Find Full Text PDFCommun Biol
January 2025
University of Chinese Academy of Sciences, 10049, Beijing, China.
Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!