Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The discovery of microRNAs (miRNAs) provided yet another mechanism of gene expression regulation. miRNAs have recently been also implicated in many diseases, including prostate cancer (PC). As PC is a highly androgen-dependent disease, extensive effort has been invested to identify the miRNAs that are androgen regulated. However, relatively few of them have been shown to be directly androgen regulated in PC. In this chapter we introduce the commonly used techniques to study the androgen regulation of miRNAs. The most cost-effective tool to profile global miRNA expression is microarray-based hybridization, whereas real-time quantitative reverse transcription PCR (qRT-PCR) is commonly used for the study of individual miRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3724-0_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!