Both chronological aging and chronic hypoxia stress have been reported to cause degeneration of hippocampal CA3 neurons and spatial memory impairment through independent pathways. However, the possible occurrence of precocious biological aging on exposure to single episode of global hypoxia resulting in impairment of learning and memory remains to be established. The present study thus aimed at bridging this gap in existing literature on hypoxia induced biological aging. Male Sprague Dawley rats were exposed to simulated hypobaric hypoxia (25,000ft) for different durations and were compared with aged rats. Behavioral studies in Morris Water Maze showed decline in learning abilities of both chronologically aged as well as hypoxic rats as evident from increased latency and pathlength to reach target platform. These behavioral changes in rats exposed to global hypoxia were associated with deposition of lipofuscin and ultrastructural changes in the mitochondria of hippocampal neurons that serve as hallmarks of aging. A single episode of chronic hypobaric hypoxia exposure also resulted in the up-regulation of pro-aging protein, S100A9 and down regulation of Tau, SNAP25, APOE and Sod2 in the hippocampus similar to that in aged rats indicating hypoxia induced accelerated aging. The present study therefore provides evidence for role of biological aging of hippocampal neurons in hypoxia induced impairment of learning and memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2016.05.011 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFEur Heart J Case Rep
January 2025
Department of Cardiovascular Medicine, Kurashiki Central Hospital, Kurashiki, Japan.
Background: Transcatheter aortic valve replacement (TAVR) is a well-established treatment option for patients with severe aortic valve stenosis; however, clinical valve thrombosis is a major challenge.
Case Summary: A 92-year-old woman underwent TAVR for severe aortic stenosis. One month later, the patient developed acute heart failure.
Iran J Biotechnol
July 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.
Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.
Front Genet
December 2024
Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Introduction: Hypoxia responses are critical for myriad physiological and pathological processes, such as development, tissue repair, would healing, and tumorigenesis. microRNAs (miRNAs) are a class of small non-coding RNAs that exert their functions by inhibiting the expression of their target genes, and miR-210 is the miRNA universally and most conspicuously upregulated by hypoxia in mammalian systems. For its relationship to hypoxia, miR-210 has been studied extensively, yet no consensus exists on the roles and mechanisms of miR-210 in human physiological processes or diseases, and we know little about genuine miR-210 target genes in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!