The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887789 | PMC |
http://dx.doi.org/10.1038/srep26850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!