Background: Mosquito lifespan can influence the circulation of disease causing pathogens because it affects the time available for infection and transmission. The life-cycle of mosquitoes is determined by intrinsic and environmental factors, which can include the availability of hosts and suitable resting environments that shelter mosquitoes from extreme temperature and desiccating conditions. This study determined the parity rates (an indirect measure of survival) and plant resting preference of vectors of Rift Valley fever (RVF) in northeastern Kenya.

Methods: Resting mosquitoes were trapped during the rainy and the dry season using a Prokopack aspirator from vegetation, whereas general adult populations were trapped using CDC light traps. At each site, sampling was conducted within a 1 km(2) area, subdivided into 500 × 500 m quadrants and four 250 × 250 m sub-quadrants from which two were randomly selected as sampling units. In each sampling unit, plants were randomly selected for aspiration of mosquitoes. Only Aedes mcintoshi and Ae. ochraceus were dissected to determine parity rates while all mosquito species were used to assess plant resting preference.

Results: Overall, 1124 (79 %, 95 % CI = 76.8-81.1 %) mosquitoes were parous. There was no significant difference in the number of parous Ae. mcintoshi and Ae. ochraceus. Parity was higher in the rainy season than in the dry season. Daily survival rate was estimated to be 0.93 and 0.92 among Ae. ochraceus and Ae. mcintoshi, respectively. Duosperma kilimandscharicum was the most preferred plant species with the highest average capture of primary (3.64) and secondary (5.83) vectors per plant, while Gisekia africana was least preferred.

Conclusion: Survival rate of each of the two primary vectors of RVF reported in this study may provide an indication that these mosquitoes can potentially play important roles in the circulation of diseases in northern Kenya. Resting preference of the mosquitoes in vegetation may influence their physiology and enhance longevity. Thus, areas with such vegetation may be associated with an increased risk of transmission of arboviruses to livestock and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886391PMC
http://dx.doi.org/10.1186/s13071-016-1601-7DOI Listing

Publication Analysis

Top Keywords

plant resting
12
parity rates
12
vectors rift
8
rift valley
8
valley fever
8
resting preference
8
dry season
8
randomly selected
8
mcintoshi ochraceus
8
survival rate
8

Similar Publications

Xylosandrus ambrosia beetles preference of nursery tree species for attacks and colonization under water stress.

J Insect Sci

January 2025

Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.

The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.

View Article and Find Full Text PDF

The Ostwald process is one of the commercial pathways for the production of nitric acid (HNO), a key component in the production of nitrate fertilizers. The Ostwald process is a mature, extensively studied, and highly optimized process, and there is still room for further intensification. The process can be further intensified by catalyzing the homogeneous oxidation of nitric oxide to nitrogen dioxide.

View Article and Find Full Text PDF

Medik. (CBP) is a species with antibacterial, anti-inflammatory, antioxidant, anticancer, and hepatoprotective effects. We have chosen to study this species because, although it is a common plant with a distinctive fruit appearance, its effects are not fully understood.

View Article and Find Full Text PDF

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

A bi-kinase module sensitizes and potentiates plant immune signaling.

Sci Adv

January 2025

Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.

Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!