Recent studies have demonstrated that epigenetic changes resulting from malnutrition might play important roles in transgenerational links with metabolic diseases. Previously, we observed that exposure to a high-fat diet (HFD) in utero caused a metabolic syndrome-like phenomenon through epigenetic modifications of the adiponectin and leptin genes that persisted for multiple generations. Recent etiological studies indicated that paternal BMI had effects on offspring BMI that were independent of but additive to maternal BMI effects. Thus, we examined whether paternal HFD-induced obesity affected the metabolic status of offspring through epigenetic changes in the adiponectin and leptin genes. Additionally, we investigated whether a normal diet during subsequent generations abolished the epigenetic changes associated with paternal HFD exposure before conception. We observed the effects of paternal HFD exposure before conception over multiple generations on offspring metabolic traits, including weight and fat gain, glucose intolerance, hypertriglyceridemia, abnormal adipocytokine levels, hypertension, and adiponectin and leptin gene expression and epigenetic changes. Normal diet consumption by male offspring during the subsequent generation following paternal HFD exposure diminished whereas consumption for two generations completely abolished the effect of paternal HFD exposure on metabolic traits and adipocytokine promoter epigenetic changes in the offspring. The effects of paternal HFD exposure on offspring were relatively weaker than those following HFD exposure in utero. However, paternal HFD exposure had an additive metabolic effect for two generations, suggesting that both paternal and maternal nutrition might affect offspring metabolism through epigenetic modifications of adipocytokine genes for multiple generations.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00095.2016DOI Listing

Publication Analysis

Top Keywords

hfd exposure
28
epigenetic changes
24
paternal hfd
24
adiponectin leptin
16
effects paternal
12
multiple generations
12
exposure
9
paternal
9
high-fat diet
8
offspring
8

Similar Publications

Zearalenone exacerbates lipid metabolism disorders by promoting liver lipid droplet formation and disrupting gut microbiota.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety),Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China. Electronic address:

Zearalenone (ZEA), produced by Fusarium, is a fungal toxin commonly found in maize, wheat, and other cereals. ZEA has the ability to bind to estrogen receptors of humans and animals and is an environmental endocrine disruptor that may interfere with glucose homeostasis and lipid metabolism. In this study, we first investigated the effects of chronic exposure to low doses of ZEA with a high-fat-diet (HFD) in obese C57BL/6 J mice.

View Article and Find Full Text PDF

Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2.

J Hazard Mater

January 2025

Department of General Surgery, Changzhou TCM Hospital, No. 25, Heping North Road, Changzhou City, Jiangsu Province 213003, China. Electronic address:

Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD.

View Article and Find Full Text PDF

Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.

Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.

View Article and Find Full Text PDF

Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1).

View Article and Find Full Text PDF

Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!