Diclofenac and lumiracoxib are two highly analogous 2-phenylaminophenylacetic acid anti-inflammatory drugs exhibiting occasional dose-limiting hepatotoxicities. Prior data indicate that bioactivation and reactive metabolite formation play roles in the observed toxicity, but the exact chemical influence of the substituents remains elusive. In order to elucidate the role of chemical influence on metabolism related toxicity, metabolic stability and electrophilic reactivity were investigated for a series of structurally related analogues and their resulting metabolites. The resulting analogues embody progressive physiochemical changes through varying halogeno- and aliphatic substituents at two positions and were subjected to in vitro human liver microsomal metabolic stability and cell-based GSH depletion assays (to measure electrophilic reactivity). LC-MS/MS analysis of the GSH trapped reactive intermediates derived from the analogues was then used to identify the putative structures of reactive metabolites. We found that chemical modifications of the structural backbone led to noticeable perturbations of metabolic stability, electrophilic reactivity, and structures and composition of reactive metabolites. With the acquired data, the relationships between stability, reactivity, and toxicity were investigated in an attempt to correlate between Phase I metabolism and in vitro toxicity. A positive correlation was identified between reactivity and in vitro toxicity, indicating that electrophilic reactivity can be an indicator for in vitro toxicity. All in all, the effect of substituents on the structures and reactivity of the metabolites, however subtle the changes, should be taken into consideration during future drug design involving similar chemical features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.6b00042 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Freie Universität Berlin: Freie Universitat Berlin, Institut für Chemie und Biochemie, GERMANY.
Herein, we present the first easy-to-access synthesis of the perfluorotrityl cation (15F+) with commercial GaCl3 and the further functionalization of the para-fluorine atoms of 15F+ via halodefluorination using trimethylsilyl halides TMSX (X = Cl, Br). This gives access to equally reactive perhalogenated trityl derivatives (p-3Cl12F+ and p-3Br12F+), which can be handled at room temperature. The impact of the para-exchange on the electronic structure is determined by NMR and UV-Vis spectroscopy.
View Article and Find Full Text PDFJ Med Chem
January 2025
Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.
View Article and Find Full Text PDFChemphyschem
January 2025
University of Namur, Department of Chemistry, Rue de Bruxelles, 61, 5000, Namur, BELGIUM.
The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Delhi, Department of Chemistry, Hauz Khas, 110016, New Delhi, INDIA.
A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
We present a highly efficient and versatile nickel-catalyzed protocol for the reductive cross-coupling of unactivated CFH-substituted electrophiles with a wide variety of aryl and alkenyl halides. This novel approach offers high catalytic reactivity and broad functional group compatibility, enabling late-stage fluoroalkylation of drug molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!