X-ray and Electron Spectroscopy of Water.

Chem Rev

Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden.

Published: July 2016

Here we present an overview of recent developments of X-ray and electron spectroscopy to probe water at different temperatures. Photon-induced ionization followed by detection of electrons from either the O 1s level or the valence band is the basis of photoelectron spectroscopy. Excitation between the O 1s and the unoccupied states or occupied states is utilized in X-ray absorption and X-ray emission spectroscopies. These techniques probe the electronic structure of the liquid phase and show sensitivity to the local hydrogen-bonding structure. Both experimental aspects related to the measurements and theoretical simulations to assist in the interpretation are discussed in detail. Different model systems are presented such as the different bulk phases of ice and various adsorbed monolayer structures on metal surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.5b00672DOI Listing

Publication Analysis

Top Keywords

x-ray electron
8
electron spectroscopy
8
x-ray
4
spectroscopy water
4
water overview
4
overview developments
4
developments x-ray
4
spectroscopy probe
4
probe water
4
water temperatures
4

Similar Publications

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.

View Article and Find Full Text PDF

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!