We explore the mitigation of atmospheric turbulence effects for orbital angular momentum (OAM)-based free-space optical (FSO) communications with multiple-input multiple-output (MIMO) architecture. Such a system employs multiple spatially separated aperture elements at the transmitter/receiver, and each transmitter aperture contains multiplexed data-carrying OAM beams. We propose to use spatial diversity combined with MIMO equalization to mitigate both weak and strong turbulence distortions. In a 2×2 FSO link with each transmitter aperture containing two multiplexed OAM modes of ℓ=+1 and ℓ=+3, we experimentally show that at least two OAM data channels could be recovered under both weak and strong turbulence distortions using selection diversity assisted with MIMO equalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.002406 | DOI Listing |
Commonly used linear equalizers in optical transmissions may induce in-band noise enhancement in the high-frequency region, degrading signaling performance. In this Letter, we propose for the first, to our knowledge, time, to mitigate the multi-input-multi-output (MIMO) equalizer-enhanced noise (EEN) in coupled-core multicore fiber (CC-MCF) systems by utilizing the spectral shaping (SS) filter and maximum likelihood sequence detection (MLSD), which have shown effective EEN mitigation in SMF systems. However, CC-MCF systems feature multiple spatial channels, each requiring separate coefficient optimization for SS filters corresponding to each output of MIMO.
View Article and Find Full Text PDFIn mode-division multiplexing (MDM) systems, the computational complexity of the multi-input multi-output (MIMO) equalization module is a critical obstacle to practical development. The step size μ and the number of taps K are key parameters in the equalization algorithm, influencing the performance of finite impulse response (FIR) equalizers, including convergence speed and output signal quality. To alleviate the computational burden of locating the optimal μ-K combination, we propose two ant colony optimization (ACO) -based MIMO equalization schemes: the fixed ACO-MIMO and the random ACO-MIMO, corresponding to two optimization strategies.
View Article and Find Full Text PDFWe successfully demonstrate photonics-assisted single-carrier 466.4 Gbit/s wireless transmission over 20 km SSMF and 6 m single-input single-output (SISO) wireless delivery at 92.5 GHz.
View Article and Find Full Text PDFOutdoor long-range terahertz (THz) communications often come at the expense of transmission rate. Moreover, the practicability of the single polarization optical/THz link, which is commonly used in the previous long-range THz demonstrations based on photonics, is extremely limited by the following two fatal defects. One is relying on active polarization control, and the other is not supporting the transparent bridging of optical polarization division multiplexed (PDM) signals for mature coherent optical communication networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!