Impact of extraction methods on bio-flocculants recovered from backwashed sludge of bio-filtration unit.

J Environ Manage

INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada. Electronic address:

Published: September 2016

AI Article Synopsis

  • The study examined the impact of ten extraction methods on the flocculation activity and chemical composition of bio-flocculants from sludge in bio-filtration units.
  • Results indicated that chemical extraction methods, particularly using EDTA, were significantly more effective than physical methods in terms of both the yield and flocculation performance of bio-flocculants.
  • The optimal concentration of EDTA for extracting bio-flocculants was found to be 5 g/L, resulting in high flocculation activity, suggesting that bio-filtration sludge could be a valuable resource for bio-flocculants.

Article Abstract

Effect of ten extraction methods on flocculation activity and chemical composition of bio-flocculants recovered from backwashed sludge of bio-filtration unit was studied. The results showed that the chemical method was better than physical method with respect to the extracted BFs weight and its flocculation activity. Cell lysis did not affect to the flocculation activity of BFs. Among ten extraction methods, EDTA (20 g/L) was the best one with extracted BFs dry weight of 6242 mg/L and flocculation activity of 83%. Optimization of EDTA concentration showed that 5 g EDTA/L (or 0.2 g EDTA/g SS) was suitable for recovery of BFs from backwashed sludge. The flocculation activity of BFs was 94% when using 2.4 mg of BFs/g of kaolin. The outcome of this study suggested that backwashed sludge of the bio-filtration unit was a potential source for exploiting bio-flocculants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.05.051DOI Listing

Publication Analysis

Top Keywords

flocculation activity
20
backwashed sludge
16
extraction methods
12
sludge bio-filtration
12
bio-filtration unit
12
bio-flocculants recovered
8
recovered backwashed
8
ten extraction
8
extracted bfs
8
activity bfs
8

Similar Publications

Protection of Enzymes Against Heat Inactivation by Enzyme-Polymer Conjugates.

Macromol Rapid Commun

January 2025

State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.

View Article and Find Full Text PDF

Investigating the Impact of Polymers on Clay Flocculation and Residual Oil Behaviour Using a 2.5D Model.

Polymers (Basel)

December 2024

Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.

In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.

View Article and Find Full Text PDF

Advanced micropollutant and phosphorus removal with superfine powdered activated carbon and pile cloth media filtration.

Water Res

December 2024

Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany. Electronic address:

Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d = 30.

View Article and Find Full Text PDF

Carboxyl and carbonyl groups of carbon dots co-coordinated assembly with Al to emission-enhanced aggregates for sensitive sensing and efficient removal.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:

It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.

View Article and Find Full Text PDF
Article Synopsis
  • Human Aichi virus 1 (AiV-1) is a picornavirus linked to gastroenteritis and is found frequently in environmental waters, indicating potential fecal contamination.
  • Recent research examined 450 water samples from a Tunisian drinking water treatment plant and Sidi Salem dam, revealing 18.9% tested positive for AiV-1 with varying viral loads throughout different treatment stages.
  • The presence of infectious AiV-1 particles poses a public health risk, and the study highlights the effectiveness of the integrated cell culture approach combined with quantitative molecular detection (ICC-RT-qPCR) for monitoring viruses in water.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!