In 2014, we performed a diagnostic study of leptospirosis in Tasmanian devil ( Sarcophilus harrisii ) samples collected between 2008 and 2012 from wild and captive animals. Tasmanian devil populations have been declining because of a facial tumor disease since the 1990s, with ongoing investigations examining potential causative agents. Identifying other causative pathogens that may contribute additively to their decline is important to preserve current and future populations. We tested 81 Tasmanian devil serum samples and two tissue samples using PCR, microscopic agglutination test (MAT), and microsphere immunoassay (MIA). We found evidence of leptospirosis in Tasmanian devil populations across a wide geographic range of Tasmania. Antibodies to serovars in the serogroup Javanica, which are not considered endemic to Australia, were identified in 10 Tasmanian devils using MAT. We also identified serovar Celledoni serologically using the immunoglobulin G MIA and detected Leptospira in one sample using PCR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7589/2015-09-239 | DOI Listing |
Folia Morphol (Warsz)
November 2024
Department of Anatomy, Tokyo Medical University, Tokyo, Japan.
Background: Marsupials have a narrower range of forelimb morphological features than placental mammals. It is hypothesized that this is due to a constraint in the reproductive biology of marsupials. The constraint is that newborn marsupials must crawl into their mother's pouch.
View Article and Find Full Text PDFG3 (Bethesda)
November 2024
Research Group Bioinformatics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Schleswig-Holstein, Germany.
Evolution
December 2024
School of Biological Sciences, Washington State University, Pullman, WA, United States.
Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer.
View Article and Find Full Text PDFMol Ecol
November 2024
School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
Emerging infectious diseases (EIDs) not only cause catastrophic declines in wildlife populations but also generate selective pressures that may result in rapid evolutionary responses. One such EID is devil facial tumour disease (DFTD) in the Tasmanian devil. DFTD is almost always fatal and has reduced the average lifespan of individuals by around 2 years, likely causing strong selection for traits that reduce susceptibility to the disease, but population decline has also left Tasmanian devils vulnerable to inbreeding depression.
View Article and Find Full Text PDFParasite Immunol
September 2024
Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
The major histocompatibility complex (MHC) molecules play an integral role in the adaptive immune response to transmissible cancers through tumour antigen presentation and recognition of allogeneic MHC molecules. The transmissible devil facial tumours 1 and 2 (DFT1 and DFT2) modulate MHC-I antigen presentation to evade host immune responses and facilitate transmission of tumours cells to new Tasmanian devil (Sarcophilus harrisii) hosts. To enhance T-cell-driven tumour immunogenicity for vaccination and immunotherapy, DFT1 and DFT2 cells were co-transfected with (i) NLRC5 for MHC-I expression or CIITA for MHC-I and MHC-II expression, and (ii) a co-stimulatory molecule, either CD80, CD86 or 41BBL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!