Ovatodiolide of Anisomeles indica Exerts the Anticancer Potential on Pancreatic Cancer Cell Lines through STAT3 and NF-κB Regulation.

Evid Based Complement Alternat Med

Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

Published: May 2016

Pancreatic cancer is the eighth leading cause of cancer death worldwide. Patients with pancreatic cancer are normally diagnosed at an advanced stage and present poor survival rate. Ovatodiolide (OV), a bioactive macrocyclic diterpenoid isolated from Anisomeles indica, showed cytotoxicity effects in pancreatic cancer cells by inhibiting cell proliferation and inducing apoptosis. Moreover, not only were cell adhesion and invasion markedly suppressed in a dose-dependent manner, but the mRNA expression of matrix metalloproteinase-9 (MMP-9) and focal adhesion kinase (FAK) was also significantly decreased. Western blot analysis indicated that OV potently suppressed the phosphorylation of STAT-3 and its upstream kinase including ERK1/2, P38, and AKT Ser473. Meanwhile, OV inactivated the nuclear factor kappa B (NF-κB) by inhibiting IκB kinase (IKK α/β) activation and the subsequent suppression of inhibitor of kappa B (IκB) phosphorylation. These results demonstrated that OV could potentially inhibit Mia-PaCa2 cancer cells proliferation and induce apoptosis through modulation of NF-κB and STAT3 pathway. Moreover, OV suppressed cell invasiveness and interfered with cell-matrix adhesion in Mia-PaCa2 cancer cells by reducing MMP-9 and FAK transcription through suppressing NF-κB and STAT3 pathway. Taken together, our findings reveal a new therapeutic and antimetastatic potential of ovatodiolide for pancreatic cancer remedy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875986PMC
http://dx.doi.org/10.1155/2016/8680372DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
20
cancer cells
12
anisomeles indica
8
cancer
8
mia-paca2 cancer
8
nf-κb stat3
8
stat3 pathway
8
pancreatic
5
ovatodiolide anisomeles
4
indica exerts
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) typically occurs in an older patient population. Yet, early-onset pancreatic cancer (EOPC) has one of the fastest growing incidence rates. This study investigated the influence of age and tumor location on postoperative morbidity and mortality in a large, real-world dataset.

View Article and Find Full Text PDF

SIGLEC11 promotes M2 macrophage polarization through AKT-mTOR signaling and facilitates the progression of gastric cancer.

J Immunother Cancer

January 2025

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: Sialic acid-binding immunoglobulin-like lectins (SIGLECs) are widely expressed on immune cell surfaces, play an important role in maintaining immune homeostasis and regulating inflammatory responses, and are increasingly emerging as potential targets for tumor immunotherapy. However, the expression profile and crucial role of SIGLEC11 in gastric cancer (GC) remain unclear. This study aimed to elucidate the prognostic relevance of SIGLEC11 expression and its role in the immune microenvironment in patients with GC.

View Article and Find Full Text PDF

Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9.

Dev Cell

December 2024

Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:

The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!