Didymella pinodes is the principal causal agent of ascochyta blight, one of the most important fungal diseases of pea (Pisum sativum) worldwide. Understanding its host specificity has crucial implications in epidemiology and management; however, this has not been clearly delineated yet. In this study we attempt to clarify the host range of D. pinodes and to compare it with that of other close Didymella spp. D. pinodes was very virulent on pea accessions, although differences in virulence were identified among isolates. On the contrary, studied isolates of D. fabae, D. rabiei, and D. lentil showed a reduced ability to infect pea not causing macroscopically visible symptoms on any of the pea accessions tested. D. pinodes isolates were also infective to some extend on almost all species tested including species such as Hedysarum coronarium, Lathyrus sativus, Lupinus albus, Medicago spp., Trifolium spp., Trigonella foenum-graecum, and Vicia articulata which were not mentioned before as hosts of D. pinodes. On the contrary, D. lentil and D. rabiei were more specific, infecting only lentil and chickpea, respectively. D. fabae was intermediate, infecting mainly faba bean, but also slightly other species such as Glycine max, Phaseolus vulgaris, Trifolium spp., Vicia sativa, and V. articulata. DNA sequence analysis of the nuclear ribosomal internal transcribed spacer region (ITS) was performed to confirm identity of the isolates studies and to determine phylogenetic relationship among the Didymella species, revealing the presence of two clearly distinct clades. Clade one was represented by two supported subclusters including D. fabae isolates as well as D. rabiei with D. lentil isolates. Clade two was the largest and included all the D. pinodes isolates as well as Phoma medicaginis var. pinodella. Genetic distance between D. pinodes and the other Didymella spp. isolates was not correlated with overall differences in pathogenicity. Based on evidences presented here, D. pinodes is not specialized on pea and its host range is larger than that of D. fabae, D. lentil, and D. rabiei. This has relevant implications in epidemiology and control as these species might act as alternative hosts for D. pinodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865514PMC
http://dx.doi.org/10.3389/fpls.2016.00592DOI Listing

Publication Analysis

Top Keywords

host range
12
pinodes
10
didymella pinodes
8
causal agent
8
ascochyta blight
8
implications epidemiology
8
didymella spp
8
pea accessions
8
isolates
8
rabiei lentil
8

Similar Publications

Background: Carcinoma prostate (CaP) is second most common cancer and sixth leading cause of cancer-related mortality among men worldwide. Prostate-specific antigen (sr. PSA) levels are prostate specific, not cancer specific.

View Article and Find Full Text PDF

Design, characterisation, and clinical evaluation of a novel porous Ti-6Al-4V hemipelvic prosthesis based on Voronoi diagram.

Biomater Transl

September 2024

Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.

Three-dimensional printed Ti-6Al-4V hemipelvic prosthesis has become a current popular method for pelvic defect reconstruction. This paper presents a novel biomimetic hemipelvic prosthesis design that utilises patient-specific anatomical data in conjunction with the Voronoi diagram algorithm. Unlike traditional design methods that rely on fixed, homogeneous unit cell, the Voronoi diagram enables to create imitation of trabecular structure (ITS).

View Article and Find Full Text PDF

The accident mortality rates are rapidly increasing due to driver inattention, and traffic accidents become a significant problem on a global scale. For this reason, advanced driver assistance systems (ADASs) are essential to enhance traffic safety measures. However, adverse environmental factors, weather, and light radiation affect the sensors' accuracy.

View Article and Find Full Text PDF

Morphological variations and adhesive distribution: a cross-species examination in conidia.

Front Fungal Biol

December 2024

Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States.

is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars.

View Article and Find Full Text PDF

Viral respiratory infection is associated with significant morbidity and mortality. The diversity of viruses implicated, coupled with their propensity for mutation, ignited an interest in host-directed antiviral therapies effective across a wide range of viral variants. Toll-like receptors (TLRs) are potential targets for the development of broad-spectrum antivirals given their central role in host immune defenses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!