Variations in intracellular free calcium were measured in platelets from normal donors, incubated with plasma from hypertensive patients and from control subjects to test the hypothesis that a circulating factor might induce an increase in calcium concentration. Before incubation, plasma was heat-inactivated or ultrafiltered. Incubation both with heat-inactivated and ultrafiltered plasma failed to result in any significant modifications in intracellular free calcium. Similarly, no significant increase was observed after incubation with ouabain at concentrations ranging from 10(-7) to 10(-4) M. No significant differences were observed between platelets incubated with plasma from hypertensive as compared with control subjects. These findings are not consistent with the hypothesis that the increase in intracellular free calcium observed in platelets of hypertensive patients may be due to a plasma ouabain-like factor.

Download full-text PDF

Source

Publication Analysis

Top Keywords

intracellular free
16
plasma hypertensive
12
hypertensive patients
12
free calcium
12
incubation plasma
8
incubated plasma
8
control subjects
8
heat-inactivated ultrafiltered
8
observed platelets
8
plasma
6

Similar Publications

Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures.

Plant Mol Biol

January 2025

Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.

The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry.

View Article and Find Full Text PDF

Pharmacological ascorbate combined with rucosopasem selectively radio-chemo-sensitizes NSCLC via generation of HO.

Redox Biol

January 2025

Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.

Differences in cancer and normal cell oxidative metabolism provide a unique therapeutic opportunity for developing combined modality approaches with redox-active small molecules as radio-chemosensitizers that are well-tolerated by normal tissues. Pentaazamacrocyclic Mn (II)-containing (MnPAM) superoxide dismutase (SOD) mimetics and pharmacological ascorbate given IV to achieve [mM] plasma levels (pharmacological ascorbate: P-AscH‾) have been shown to act individually as cancer cell radio- and chemosensitizers via the generation of HOin vivo. The current study shows that the combination of newly developed MnPAM dismutase mimetic, rucosopasem manganese (RUC) with P-AscH‾ radio-sensitizes non-small cell lung cancer cells (NSCLC) and increases steady state levels of intracellular HO with no additional toxicity to normal human bronchial epithelial cells (HBECs).

View Article and Find Full Text PDF

In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.

View Article and Find Full Text PDF

Cathepsin B Activatable Fluorescent Probe for Antitumor Efficiency Feedback: Attempt To Detect Certain Apoptotic Cells.

Anal Chem

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

As many treatments kill tumor cells by inducing apoptosis, fluorescent probes that can detect apoptosis are crucial for effective feedback regarding tumor therapy outcomes (in particular, activatable probes for better imaging). Cathepsins are enzymes that are released from lysosomes into the cytoplasm during lysosomal membrane permeabilization-induced apoptosis of many tumor cells, making them potential biomarkers of apoptotic cells. Despite their potential, to the best of our knowledge, no cathepsin-activatable fluorescent probes have been reported for this purpose.

View Article and Find Full Text PDF

The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!