AI Article Synopsis

  • - Neurons in the primary visual cortex respond wildly to traditional stimuli like drifting bars, but show more efficient, sparse spikes when exposed to natural scenes.
  • - The study used a model of higher mammals' visual systems to explore how push-pull receptive field organization and fast synaptic depression reshape responses in the primary visual cortex.
  • - Findings indicate that the reliable and sparse spiking during natural vision isn't just due to better sensory input but results from the interplay of fast synaptic depression and effective feed-forward inhibition in the thalamo-cortical pathway.

Article Abstract

Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of "effective" feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862982PMC
http://dx.doi.org/10.3389/fncir.2016.00037DOI Listing

Publication Analysis

Top Keywords

synaptic depression
16
push-pull receptive
8
receptive field
8
field organization
8
natural scenes
8
spiking responses
8
fast synaptic
8
natural
5
synaptic
4
organization synaptic
4

Similar Publications

Schizophrenia (SZ) is a complex, chronic mental disorder characterized by positive symptoms (such as delusions and hallucinations), negative symptoms (including anhedonia, alogia, avolition, and social withdrawal), and cognitive deficits (affecting attention, processing speed, verbal and visuospatial learning, problem-solving, working memory, and mental flexibility). Extensive animal and clinical studies have emphasized the NMDAR hypofunction hypothesis of SZ. Glycine plays a crucial role as an agonist of NMDAR, enhancing the receptor's affinity for glutamate and supporting normal synaptic function and plasticity, that is, signal transmission between neurons.

View Article and Find Full Text PDF

Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.

View Article and Find Full Text PDF

Modulating memristors optically paves the way for new optoelectronic devices with applications in computer vision, neuromorphic computing, and artificial intelligence. Here, we report on memristors based on a hybrid material of vertically aligned zinc oxide nanorods (ZnO NRs) and poly(methyl methacrylate) (PMMA). The memristors require no forming step and exhibit the typical electronic switching properties of a bipolar memristor.

View Article and Find Full Text PDF

Homeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing.

View Article and Find Full Text PDF

Advances in transcranial focused ultrasound neuromodulation for mental disorders.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China. Electronic address:

Mental disorders are a major public health concern, affecting millions worldwide. Current treatments have limitations, highlighting the need for novel, effective, and safe interventions. Transcranial focused ultrasound (tFUS), a non-invasive neuromodulation technology, has emerged as a promising tool for treating mental disorders due to its high controllability, precision, and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!