In this paper, firstly, the morphology and toughness of a range of bulk epoxy polymers, which incorporate a second phase of well-dispersed silica nanoparticles and/or rubber microparticles, have been determined. Secondly, the macro-properties of natural-fibre reinforced-plastic (NFRP) composites based upon these epoxy polymers have been ascertained, using (i) unidirectional flax fibres or (ii) regenerated-cellulose fibres in the architecture of a plain-woven fabric. Thirdly, the toughening mechanisms which are induced in these materials by the presence of the silica nanoparticles, the rubber microparticles and the natural fibres have been identified. Finally, the values of the toughness of the bulk epoxy polymers and corresponding NFRPs have been quantitatively modelled. The increased toughness recorded for the bulk epoxy polymer due to the presence of the silica nanoparticles and/or rubber microparticles was indeed typically transferred to the NFRP composites when using such epoxies as the matrices for the fibres. Thus, the important role that may be played by modifications to the epoxy matrices in order to increase the toughness of the composites was very clearly demonstrated by these results. However, notwithstanding, the toughening mechanisms induced by the fibres were essentially responsible for the very high toughnesses of the NFRP composites, compared with the bulk epoxy polymers. The modelling studies successfully predicted the values of toughness of the bulk epoxy polymers and of the NFRP composites. These studies also quantified the extent to which each toughening mechanism, induced by the second-phase nano- and microparticles and the natural fibres, contributed to the overall values of toughness of the materials. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2015.0275 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Nanomagnetism may enable electrical conductivity and Seebeck coefficient to be decoupled and can potentially lead to remarkable enhancements in thermoelectric (TE) performance, however, their physical mechanisms have not been explored. Herein, it is shown that the nanomagnetism from Fe and FeO nanoparticles embedded in BiSbTe/epoxy flexible films can lead to the carriers splitting into spin-up and spin-down conductive branches with different resistances and mobilities due to the exchange interaction between the spin of carriers and the nanomagnetism. The double-resistance conduction of carriers may well explain the decoupling of electrical conductivity and Seebeck coefficient and their simultaneous enhancements in the thermo-electro-magnetic flexible films.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Shenyang Agricultural University, Shenyang, Liaoning, China.
Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings.
View Article and Find Full Text PDFHeliyon
December 2024
Instituto Tecnológico de Mexicali. Tecnológico Nacional de México, Av. Instituto Tecnológico s/n. Col. Plutarco Elías Calles, C.P.21376, Mexicali, Mexico.
Transporting bulk water from cities where it is scarce requires significant amounts of energy. It is estimated that 7 % of the world's energy production is consumed by pumping systems. Most energy efficiency actions are not applicable to systems of bulk water distribution.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
J AOAC Int
December 2024
J-Star Research, Inc. A Porton Company 6 Cedarbrook Drive, Cranbury Township, NJ 08512, USA.
Background: Moxidectin is an active pharmaceutical ingredient (API) extensively used in various drug products within the pharmaceutical and animal health sectors. Despite its widespread use, the analytical methods prescribed by the United States Pharmacopeia (USP) and European Pharmacopoeia (EP, Ph. Eur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!