Background: Onychomycosis is a widespread public health problem, in which T. rubrum and T. mentagrophytes is the commenest causative organisms. Current medical therapy has many drawbacks and side effects. Methylene blue (m.b) photodynamic therapy (pdt) proved efficacy but with lengthy sessions.
Objectives: Optimizing methylene blue photodynamic therapy by combination of methylene blue photosensitizer and gold nanoparticles (aunps) in a composite as gold nanoparticles are efficient delivery systems and efficient enhancers of photosensitizers for antifungal photodynamic therapy.
Materials And Methods: Eighty newzealand rabbit (Oryctolagus cuniculus) were used and categorized in eight equal groups as follows; healthy and infection control, composite photodynamic therapy and five comparative groups. Photodynamic therapy was initiated at day three to five post inoculation, for four sessions forty eight hours apart. Each group divided and light exposure at two fluencies; 80J and 100J. All groups were investigated macroscopically and microscopically (histopathology and scanning electron microscope) also flowcytometry assessment for cell death and X-ray analysis for gold nanoparticles accumulation in brain and liver tissues were determined.
Results: Recovery from infection approaching 96% in gold nanoparticles+light group, around 40% in methylene blue photodynamic therapy and 34% in composite photodynamic therapy. The observed findings confirmed by apparent decrease of apoptosis, however small amounts of gold nanoparticles detected in brain and liver.
Conclusion: Light stimulated gold nanoparticles is a promising tool in treatment of onychomycosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2016.05.010 | DOI Listing |
Support Care Cancer
January 2025
Dentistry Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
Objective: To compare the treatment of osteoradionecrosis (ORN) using a protocol that incorporates antimicrobial photodynamic therapy with a conventional treatment protocol.
Methodology: This retrospective study analyzed 55 patients diagnosed with ORN at a reference hospital between 2002 and 2021. Patients were treated using two different clinical protocols.
J Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China. Electronic address:
The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.
View Article and Find Full Text PDFBiomaterials
December 2024
Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!